US009348596B2

a2 United States Patent 10) Patent No.: US 9,348,596 B2
Gschwind (45) Date of Patent: May 24, 2016
(54) FORMING INSTRUCTION GROUPS BASED 5,448,746 A * 9/1995 Eickemeyer GO6F 9/30149
ON DECODE TIME INSTRUCTION S5SL0LS A 81996 Beausoleil of al 712/210
,551, eausoleil et al.
OPTIMIZATION 5,574,873 A 11/1996 Davidian
. 5,613,080 A 3/1997 Ray etal.
(71) Applicant: INTERNATIONAL BUSINESS 5,613,117 A % 3/1997 Davidson GOGF 8/433
MACHINES CORPORATION, 717/144
Armonk, NY (US) 5,790,825 A 8/1998 Traut
’ 5,815,719 A 9/1998 Goebel et al.
3k
(72) Inventor: Michael K. Gschwind, Chappaqua, NY 3,832,260 A L11/1998 Arora ... GO6F 2/1320/225
(Us) 5,854,933 A 12/1998 Chang et al.
5,966,539 A 10/1999 Srivastava et al.
(73) Assignee: INTERNATIONAL BUSINESS 6,000,028 A 12/1999 Chernoff et al.
MACHINES CORPORATION, (Continued)
Armonk, NY (US)
)) o) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Jp 06028324 A * 2/1994
U.S.C. 154(b) by 433 days. woO WO02010056511 A2 5/2010
WO WO02012144374 A1 10/2012
(21) Appl. No.: 13/931,698 OTHER PUBLICATIONS
(22) Filed: Jun. 28,2013 ‘Implementing Optimizations at Decode Time’ by Ithyun Kim and
Mikko H. Lipasti ight 2002, IEEE.*
(65) Prior Publication Data Heko . HApastt, copyrig X
(Continued)
US 2015/0006852 A1l Jan. 1, 2015
(51) Int.ClL Primary Examiner — Steven Snyder
GOGF 9/30 (2006.01) (74) Attorney, Agent, or Firm — William A. Kinnaman, Jr.,
GOG6F 9/145 (2006.01) Esq.; Blanche E. Schiller, Esq.; Heslin Rothenberg Farley &
GOG6F 9/38 (2006.01) Mesiti P.C.
(52) US.CL
CPC GOG6F 9/30196 (2013.01); GOGF 8/443 (57) ABSTRACT
(2013.01); GOGF 8/4441 (2013.01); GO6F
9/30145 (2013.01); GOGF 9/3822 (2013.01); Instructions are grouped into instruction groups based on
GO6F 9/3853 (2013.01) optimizations that may be performed. An instruction is
(58) Field of Classification Search obtained, and a determination is made as to whether the
None instruction is to be included in a current instruction group or
See application file for complete search history. another instruction group. This determination is made based
on whether the instruction is a candidate for optimization,
(56) References Cited such as decode time instruction optimization. If it is deter-

U.S. PATENT DOCUMENTS

5,175,856 A
5,179,702 A

12/1992 Van Dyke et al.
1/1993 Spix et al.

mined that the instruction is to be included in another group,
then the other group is formed to include the instruction.

16 Claims, 25 Drawing Sheets

-CACHE
INSTRUCTION 0 (10)

INSTRUCTION 1 {11) 400

DECODER([~402 DECODER 1 | 404
INSTRUCTION] 405
DECODER DECODER
410
44 ¢ OPERAND & INSTRUCTION INFO {418
OPERAND: OPERAND:
RESOURCE- 418 CPTIMIZATION RESOURCE-
PROPERTIES ANALYSIS PROPERTIES
SPECIFIERS E(Q‘j‘f\'gf SPECIFIERS
INSTRUCTION TYPE INSTRUCTION TYPE

INSTRUCTION
OPTIMIZER

426

420

LH

10P(0)

L —m[INSTRUCTION
OPTIMIZER

428

422 o

424
10P(1)

US 9,348,596 B2
Page 2

(56)

6,009,261
6,185,669

6,260,190
6,286,094

6,308,255
6,463,582
6,651,164
6,711,670
7,028,286
7,257,806
7,681,019

7,797,517
7,882,335

7,925,860
7,934,203
8,104,028
8,214,191

8,402,257
2002/0066086

2002/0095667
2002/0161987

2004/0133765

2005/0010912
2005/0289530

2006/0010431
2006/0130012
2007/0050605

2007/0050609

2008/0126764
2008/0177980
2009/0204791
2009/0210666

2009/0210668
2009/0210676

2010/0306471
2011/0119660
2011/0307961

2012/0311199
2013/0042090
2013/0086361
2013/0086362
2013/0086368
2013/0086369
2013/0086570

References Cited
U.S. PATENT DOCUMENTS

A 12/1999 Scalzi et al.

Bl* 2/2001 Hsucoevvvnnne.
Bl* 7/2001 Ju .o

B1* 9/2001 Derrickccccoovnen

Bl 10/2001 Gorishek, IV et al.
Bl 10/2002 Lethin et al.

Bl 11/2003 Soltis, Jr. et al.

Bl 3/2004 Soltis, Jr. et al.

B2 4/2006 Larin et al.

B1 8/2007 Chen et al.

B1* 3/2010 Favor

Bl1* 9/2010 Favor

B2* 2/2011 Luickccooovnnnnn.

Bl 4/2011 Juffa et al.

B2 4/2011 Lovett et al.

B2 1/2012 Stoodley et al.
B2* 7/2012 Ferrenccccu..

B2* 3/2013 Ferrencccocovvnnrene

Al* 5/2002 Linden

Al 7/2002 Archambault

Al* 10/2002 Altman ...

Al* 7/2004 Tanaka ...

Al 1/2005 Adolphson et al.

Al* 12/2005 Robison

Al 1/2006 Patil et al.
Al 6/2006 Hatano et al.
Al* 3/2007 Ferrenccco.c..

Al* 3/2007 Ferrenccco.c..
Al 5/2008 Wu et al.

Al 7/2008 Citron et al.
Al 8/2009 Luick

Al* 82009 Luickccovnnnne.

Al 8/2009 Luick et al.

Al* 82009 Luickccovnnnne.

Al 12/2010 Luick et al.
Al 5/2011 Tanaka et al.
Al* 12/2011 de Perthuis

Al 12/2012 Bender et al.

Al 2/2013 Krashinsky et al.
Al 4/2013 Gschwind et al.
Al 4/2013 Gschwind et al.
Al 4/2013 Gschwind et al.
Al 4/2013 Blainey et al.
Al 4/2013 Blainey et al.

OTHER PUBLICATIONS

‘Processor Microarchitecture—An Implementation Perspective’ by
Gonzalez et al., copyright 2011 by Morgan and Claypool.*
‘POWER4 system microarchitecture’ by J. M. Tendler et al., IBM J.
Res. & Dev. vol. 46 No. 1 Jan. 2002.*

“Power ISA™ Version 2.07,” International Business Machines Cor-
poration, May 2013, pp. 1-1526.

“z/Architecture Principles of Operation,” IBM® Publication No.
SA22-7832-09, Tenth Edition, Sep. 2012, pp. 1-1568.

Salapura, et al., “Using Register Last-Use Information to Perform
Decode-Time Computer Instruction Optimization,” U.S. Appl. No.
13/251,486, filed Oct. 3, 2011, pp. 1-96.

Salapura, et al., “Generating Compiled Code that Indicates Register
Liveness,” U.S. Appl. No. 13/251,803, filed Oct. 3, 2011, pp. 1-54.
Salapura, et al., “Generating Compiled Code that Indicates Register
Liveness,” U.S. Appl. No. 13/664,595, filed Oct. 31, 2012, pp. 1-52.
Salapura, et al., “Prefix Computer Instruction for Compatibly
Extending Instruction Functionality,” U.S. Appl. No. 13/251,426,
filed Oct. 3, 2011, pp. 1-85.

Salapura, et al., “Tracking Operand Liveliness Information in a Com-
puter System and Performing Function Based on the Liveliness Infor-
mation,” U.S. Appl. No. 13/251,441, filed Oct. 3, 2011, pp. 1-75.
Salapura, et al., “Caching Optimized Internal Instructions in Loop
Buffer,” U.S. Appl. No. 13/432,512, filed Mar. 28, 2012, pp. 1-41.
Salapura et al., “Performing Predecode-Time Optimized Instructions
in Conjunction with Predecode Time Optimized Instruction
Sequence Caching,” U.S. Appl. No. 13/432,357, filed Mar. 28, 2012,
pp. 1-32.

Salapura et al., “Decode Time Instruction Optimization for Load
Reserve and Store Conditional Sequences,” U.S. Appl. No.
13/432,404, filed Mar. 28, 2012, pp. 1-52.

Salapura et al., “Decode Time Instruction Optimization for Load
Reserve and Store Conditional Sequences,” U.S. Appl. No.
13/783,985, filed Mar. 4, 2013, pp. 1-49.

Salapura et al., “Instruction Merging Optimization,” U.S. Appl. No.
13/432,458, filed Mar. 28, 2012, pp. 1-36.

Salapura et al., “Instruction Merging Optimization,” U.S. Appl. No.
13/790,580, filed Mar. 8, 2013, pp. 1-40.

Salapura et al., “Instruction Merging Optimization,” U.S. Appl. No.
13/432,537, filed Mar. 28, 2012, pp. 1-35.

Salapura et al., “Instruction Merging Optimization,” U.S. Appl. No.
13/790,632, filed Mar. 8, 2013, pp. 1-31.

Schwarz, E., “Modify and Execute Next Sequential Instruction Facil-
ity and Instructions Therefore,” U.S. Appl. No. 13/710,494, filed Dec.
11, 2012, pp. 1-100.

Gschwind, Michael K., “Optimization of Instruction Groups Across
Group Boundaries,” U.S. Appl. No. 13/931,680, filed Jun. 28, 2013,
pp. 1-87.

Office Action for U.S. Appl. No. 13/931,680 dated Nov. 4, 2015, pp.
1-21.

International Search Report and Written Opinion for PCT/JP2014/
003267, dated Sep. 16, 2014, pp. 1-10.

Notice of Allowance for U.S. Appl. No. 14/550,955 dated Mar. 15,
2016, pp. 1-19.

Notice of Allowance for U.S. Appl. No. 13/931,680 dated Mar. 16,
2016, pp. 1-30.

* cited by examiner

US 9,348,596 B2

Sheet 1 of 25

May 24, 2016

U.S. Patent

I Old
8¢l vel Zel oSl 8zl
{ { { { {
AVIdSIa yavads | | asnow | | Tivexovel | | auvosaay
[
y3Ldvay
mm_lUn_éﬁin_m_o JOV44ILNI ¥3SN
o€l NNF \—gz1
2Cl—{ WYOMLIN e
r ¥3Ldvay
SNOLLYDINNWNOID d31dvav o/l NV NOY NdO
- ((!)
0zl
8Ll AN oLl oLl
1z
oor\\\ >

U.S. Patent May 24, 2016 Sheet 2 of 25 US 9,348,596 B2
200\\ 204
|—1 —————————————— -
| | INSTRUCTION || FETCH-DECODE | |
ZOG‘T CACHE N [7T208
| |
_1 | INSTRUCTION |
210-1 " quede |
| |
212] |
Moo |
214 | UNIT |
L ———]]
216~ yy 218~ §y | | v 220
| | ARCHITECTED UNIFIED MAIN MAPPER INTERMEDIATE [
| | REGISTER FREE REGISTER |
| MAPPER REGISTER LIST MAPPER !
| 21 9’/' I
| I | I
S |]
5 222~
215 ISSUE QUELE COMPLETION
[UNIT
221
224 - i1 =
20 N i 1!
DATA CACHE J=—= | EXEC. EXEC. REGISTER |, , .| REGISTER
(| UNIT || N I : FILE FILE :"
[
Ay o O Y
230a 230n 232a 232n

FIG. 2

US 9,348,596 B2

Sheet 3 of 25

May 24, 2016

€ 9Old

|| =
| SIHSNTH ONY SLANYNIINI |
| —u3x H am 04 \rnmm _
_ & 300030 NOILONMLSNI |
_
| gve ope vve 4 1SS A 7 NV NOILYINYO4 dNOYD _
_

_
| $ § X4 ~~0L€ |
| L u3ax H am x3 H 28 H ssiH an Hl ao H waax Hea H za H 1a Hoa _

ove
| Zve—) 866~ \.gee N Sie 21— 208 |
LT S 1TEE waax H am HuwaH oa H va H 2 H sstH am - _
M_o- - 0ce 90s— s | a5 1R
ose 1S/d1 £ee ﬁ vog— _
L y3ax H am _— x3a H 4 H ssiH an = oz |
o . c
Jee) “Immm vee zee oies 00€ —— HOL34 NOILONYLSNI |_
ONISSIO0Ud ¥3QHO-40-LNO SL1O3MI03Y HONYXE
oge—/

U.S. Patent

US 9,348,596 B2

Sheet 4 of 25

May 24, 2016

U.S. Patent

(1)dol v¥ Old (0)dol
zzy 0zy
gzy 0 0 9zy
¥3ZIWILdO ¥3ZINILAO
NOILLONYISNI [~a—— —»{ NOILONYLSNI
| 3dAL NOILONYLSNI | s | AL NOLLONMLSNI |
| SYIHI0AIS | INIONI | SY3HI0AdS !
| s3Iy3dodd ™1 sisawvw [L S3y3doud |
| [308n0s3y | NOLLVZINILdO [8}¥ | -30uNOSH | |
| aNwM3do | | ONV¥3dO | !
oy T — OdNI NOILONYLSNI ® NVY3dO w ~_"]
[0 oly
¥30003d ZLy ¥30003a
NoLLONdLsNI[997 907 | NOILONYLSNI
POy ™1 | 4300030 207 0¥30093a
007~ (L) 1 NOLLONYLSNI | (01) 0 NOLLONYLSNI
FHOVO

1424

US 9,348,596 B2

Sheet 5 of 25

May 24, 2016

U.S. Patent

HIQONI ¥3QH0-40-LN0 HIQHONI ¥3QH0-40-LNO
31N03X3 8y ETIOETE 8.+ 31N03X3 85+ 31N03X3 20p
zay| ovd | z1d | 2do L 19y [zay | VY | ZLY x&oL 2| ovd | 21d | zdo L 2| u| zvd| zuy xaoL
18 | VY | b1y EoJ had | | b EoJ W v | L EoJ W] L [1O fy
A A
08% oL oGt 09%
ON| |ovd=hid ON| |s3A
S3A
LT18YZINILAQ (T19VZINILAQ
Ly T
¥3ZINILdO oz~ ¥IZIWILJO
ziv | 7| ovy| zuy| zdo zar ™ o ovd | 2| zdo
oLr{red| v | 11| 1do osy ™~ V| v | 11d | 1do

US 9,348,596 B2

Sheet 6 of 25

May 24, 2016

U.S. Patent

gdS 'Old <

VG Old <

1Mo “pl ‘i p|

Jaddn ‘z1 ‘y1 sippe

¢ dNO¥O

pasnun

gl

4

I

| dNOYO

8l

1!

9

Jamo| ‘pl ‘7l p|

¢ dNO¥O

Jaddn ‘z1 ‘1 sippe

gl

4

I

| dNOYO

US 9,348,596 B2

Sheet 7 of 25

May 24, 2016

U.S. Patent

V9 'Old

SNOILONYLSNI

JHON S3A

809

ONISS300¥dd ¥3H.LHN4 HO4
dNOYO NOILONYLSNI AN3S

9097

¢{dNOYO NI
S1OTS NOILONYLSNI
JHOW

¥09

209~ dNOY¥O NOILONYLSNI
OL NOILONMYLSNI aav

-

0091 dNOYO ALdINT MIN LHVLS

(LLavis)

US 9,348,596 B2

Sheet 8 of 25

May 24, 2016

U.S. Patent

(dNOYO M3N 1HVLS)
S3A

969

¢31VAIANYD

OlLd vV WHO4
SNOILONYLSNI
1X3aN

099

a9 'Old

¢SNOILLONYLSNI

JHON S3A

8G9™

ONISSIO0Ud ¥IHLHNS HO4
dNOYO NOILONYLSNI AN3IS

259™] oL NOILONYLSNI dav

¢dNOYO NI
SLO1S NOLLONHLSNI
JHON

dNOY¥O NOILONYLSNI

-

0991

dNOYO ALdNI M3IN LHVLS

(_Lavis)

US 9,348,596 B2

Sheet 9 of 25

May 24, 2016

U.S. Patent

(dNOYD M3IN LYv1S)
‘S3A

99

S3A

Q9 Old
¢SNOILONYLSNI
FHONW
089
879~ ONISS300Ud ¥3HLUNS ¥4
dNOYD NOILONYLSNI ON3S

3JON3ND3S
0110 318ISSOd V

40 NI939 V SINIS3Hd3Y

(SINOILONYLSNI

¢dNOYO NI
S1071S NOILONYLSNI
JHOW

] dnows NoiLonuLsi
€297 oL NOILONYLSNI aay

-

02971 dNOYO ALdANI MIN LYVLS

(Lavis)

US 9,348,596 B2

Sheet 10 of 25

May 24, 2016

U.S. Patent

V. Ol4
(O)

90.L™

JHOVO-1 OLNI SHINHVIN
0110 HLIM NOILONNNOD
NI SNOILONYLSNI 33V

3JON3ND3S
80,71 0ILAV ONILYVLS SV
NOILONYLSNI MHVIN

L

¥0.L~

¢3ON3ND3S 0I1a
V 40 LYVLS SIN3STHd3Y
NOILONYLSNI

3ON3ND3S
Ol1d V ONILHVLS LON SY
NOILONYLSNI MHVA

00L™M

AHOYVY3IH 3HOVO 40 13AT1
1X3N WO¥4 SNOILONYLSNI JAIFOFH

(LLavis)

US 9,348,596 B2

Sheet 11 of 25

May 24, 2016

U.S. Patent

g/ Old

¢SNOILONYLSNI

JHOW S3A

)73

8™ ONISS3IO0¥d ¥IHLHNS HOS
dNOYO NOILONYLSNI AN3S

(dNO¥D M3aN LHV1S)
'S3A

¢{dNOYO NI
S107S NOILONHLSNI
JHOW

NOILONYLSNI
IXaN

ON

7)™ dNO¥O NOILONYLSNI
OL NOILONYLSNI aav

-

0€27™ dNOYO ALdWI M3IN LHVIS

(L1avis)

US 9,348,596 B2

Sheet 12 of 25

May 24, 2016

U.S. Patent

g8 'Old <

V8 ‘Ol <

ol

al

Jamo| ‘pl ‘4 p

Jaddn ‘zJ ‘pi sippe

pasnun

pasnun

¢

W

8!

/!

ol

al

Jamo| ‘yl ‘vl pi

Jaddn ‘zJ ‘pi sippe

US 9,348,596 B2

Sheet 13 of 25

May 24, 2016

U.S. Patent

&dNO¥O
INIHEND OLNI ; ALVAIONYD OLLa V &dNOYD NI
AT3HILNT LI4 IONIND3S ow._on_ SNOLLONYLSNI S107S NOILONHLSNI

6 Ol

¢SNOILONYLSNI

JHON S3A

¢l6

ONISS3008d ¥3H.LYN4 ¥O4

0L6™ 34noND NOILONYLSNI ANIS

JHONW

) dnoyo NoILoNYLSNI
¢06”] oL NOILONYLSNI aav

- i,

0061 dNOYO ALdNT M3N LHVLS

(LLavis)

US 9,348,596 B2

Sheet 14 of 25

May 24, 2016

U.S. Patent

VOl '©Old

90017

JHOVO-1 OLNI NOILVLONNY HLON3T ANV
SHIMHVIN O1LA HLIM NOLLONNFNOD
NI SNOILONYLSNI 30V1d

L3

HLON313DN3ND3S
ANV 30N3ND3S
0110 V ONILYVLS

SV NOILONYLSNI MdVA

800L ™

#0017

00011 13N WON4 SNOILONKLSNI 3AI3OTY

JON3ND3S
OlLd V ONILYVLS 1ON SV
NOILONYLSNI MHVIN

¢3IONIND3S O1Ld
V 40 1HV1S SIN3STdd3d
NOILONYLSNI

AHOYVYH3IH JHOVO 40 T3AT1T

(Lavis)

US 9,348,596 B2

Sheet 15 of 25

May 24, 2016

U.S. Patent

31vdIONVD O1Ld

TIM

dol ©Old

0v0L™

¢31VAIONVO OILa V
O 14VIS V SV 031V.LIONNY
NOILONHLSNI
IXaN

A

¢SNOILONYLSNI
JHON

Y0l

S3A

ONISS3O0¥d ¥3H.LYNd ¥Od
dNOYO NOILONYLSNI AN3S

2€0L™] oL NOILONYLSNI aay

¢dNOYO NI
S101S NOILONYHLSNI
JHON

dNOYO NOILONYLSNI

-

0€0L™

dNOYO ALdNT M3IN LHV1S

(Lvis)

US 9,348,596 B2

Sheet 16 of 25

May 24, 2016

U.S. Patent

—90L1

Ll "Old
oLLL q0L1
g ~T1av o907
HO13d
N 8l NOILONYLSNI
an _‘\ s4ndl
Y
oL NOLLYWHO4 dNO¥D
oSkl
ozLL ¥zLl
4 4 e vy
3009%3a NOILVZIWILdO 10313a JOVHOLS
AOYOIT ALV1dNAL 31vidnaL [T ©ao3
y y) .
AW
T al
8zl 1 300930 dNOMO av3uHL
p g
00} 1 0zZ11 2190730023a NOILONYLSNI zel1
YOl 1 S1INN NOILNO3X3

U.S. Patent May 24, 2016 Sheet 17 of 25 US 9,348,596 B2

COMPUTER
PROGRAM
PRODUCT

1200

(1204 \t:\\\\

PROGRAM
CODE LOGIC

COMPUTER
READABLE
STORAGE
MEDIUM
1202

~—

FIG. 12

U.S. Patent May 24, 2016 Sheet 18 of 25 US 9,348,596 B2

HOST COMPUTER 5000
5001
|
PROCESSOR (CPU)
DAT
5003~ ADDRESS
TLB I
5007 — |
|
LOAD/STORE |
UNIT B |
|
5005 5004 ‘ Y
[C
INSTRUCTION
- A
FETCH UNIT C b cenrrAL
Ei STORAGE
INSTRUCTION | __
DECODE UNIT [2006 R
5009
5008
INSTRUCTIONF Lsooz
EXECUTION UNIT [™®
yi N
MEDIA
5011 NETWORK
5010

FIG. 13

U.S. Patent

5022

////

4

DISPLAY

5024

5020

KEYBOARD

FIG. 14

NETWORK

May 24, 2016 Sheet 19 of 25 US 9,348,596 B2
OPERATING SYSTEM
APPLICATION 1—_ 5435
APPLICATION 2
APPLICATION 3
s 5031
Vs //
/// /
BASE COMPUTER ,* /
// / P
/ 5021
MEMORY [/~ 2028
| L 5027
STORAGE
PROCESSOR MEDIA
(
)
5026
5028
= 5030
PRINTER/SCANNER

5029

U.S. Patent May 24, 2016 Sheet 20 of 25 US 9,348,596 B2

5040
- REMOTE SERVER

=
W = -—~5048

INTERNET
5047

[f—5046

)1

5050
5044
50431-_?%
= =2, ==
CLIENT 1 CLIENT 4

CLIENT 2 5042

FIG. 15

U.S. Patent May 24, 2016

5025—"

Sheet 21 of 25 US 9,348,596 B2

MEMORY

\ (5053

PROCESSOR CACHES
5055
PROGRAM COUNTER X /
5061—)
INSTRUCTION FETCH
DECODE/DISPATCH 5058 LOAD/STORE UNIT
BRANCH r—5062
UNIT
EXECUTION
UNIT DAT
\\ | REGISTERS 5059

5057’)

FIG. 16

5054 —"Y /O UNITS

U.S. Patent

EXECUTION UNIT

May 24, 2016 Sheet 22 of 25 US 9,348,596 B2

5057

r—5067

"I | |

A C s069

F~5071
// [\ N\
OTHER
5065—) F—5056
DECODE/DISPATCH
5059—~ REGISTERS
5060
LOAD/STORE UNIT

FIG. 17A

U.S. Patent May 24, 2016 Sheet 23 of 25 US 9,348,596 B2

BRANCH UNIT 2

BHT

| -~ 5081

r—5056

DECODE/DISPATCH

5059 REGISTERS

FIG. 17B

U.S. Patent May 24, 2016 Sheet 24 of 25 US 9,348,596 B2

5060
LOAD/STORE UNIT

CTL

| -~ 5084

OTHER

5083 —) r— 5056

DECODE/DISPATCH

5059 - REGISTERS

CACHE/MEMORY | —~_
INTERFACE 5053

FIG. 17C

U.S. Patent May 24, 2016 Sheet 25 of 25 US 9,348,596 B2

5092
EMULATED (VIRTUAL)
HOST COMPUTER
MEMORY 5094
5000' 5096
COMPUTER
MEMORY
(HOST)

5?391
R B
| EMULATED (VIRTUAL) |
| PROCESSOR (CPU) |
| 5097 |
| |
| |

5093
! EMULATION !
| ROUTINES |
| PROCESSOR |
| NATIVE |
| | INSTRUCTION SET [“&— !
| ACHITECTURE 'B' |
| |
| |
| |
| |
| |
| |
| |
| |
| |
e /—/—/———— J
/ AN
MEDIA
5011 NETWORK
5010

FIG. 18

US 9,348,596 B2

1

FORMING INSTRUCTION GROUPS BASED
ON DECODE TIME INSTRUCTION
OPTIMIZATION

BACKGROUND

One or more aspects relate, in general, to processing within
aprocessing environment, and in particular, to optimizing the
processing.

Processors execute instructions that direct the processors
to perform specific operations. The instructions may be part
of'user applications that perform user-defined tasks, or part of
operating system applications that perform system level ser-
vices, as examples.

One processing technique used by the processors to pro-
cess the instructions is referred to as pipelined processing, in
which processing is performed in stages. Example stages
include a fetch stage in which the processor fetches an
instruction from memory; a decode stage in which the fetched
instruction is decoded; an execute stage in which the decoded
instruction is executed; and a complete stage in which execu-
tion of the instruction is completed, including updating archi-
tectural state relating to the processing. Other and/or different
stages are possible.

To facilitate processing within a pipelined processor, vari-
ous optimization techniques are employed. One such tech-
nique includes decode time instruction optimization, which
offers an opportunity to improve code execution by combin-
ing multiple instructions into a single internal instruction;
recombining multiple instructions into multiple/fewer inter-
nal instructions; and/or recombining multiple instructions
into multiple internal instructions with fewer data dependen-
cies.

BRIEF SUMMARY

Shortcomings of the prior art are overcome and additional
advantages are provided through the provision of a computer
program product for facilitating processing within a process-
ing environment. The computer program product includes a
computer readable storage medium readable by a processing
circuit and storing instructions for execution by the process-
ing circuit for performing a method. The method includes, for
instance, obtaining an instruction to be executed in the pro-
cessing environment; determining whether the instruction is
to be included in a current group of instructions or a new
group of instructions, wherein the determining is based on
whether the instruction is a candidate for optimization with
another instruction according to an optimization criterion;
based on determining the instruction is to be included in the
new group of instructions, forming the new group of instruc-
tions, the new group of instructions including the instruction
and the another instruction; and based on forming the new
group of instructions, executing at least one instruction asso-
ciated with the new group of instructions.

Methods and systems relating to one or more aspects are
also described and claimed herein. Further, services relating
to one or more aspects are also described and may be claimed
herein.

Additional features and advantages are realized through
the techniques described herein. Other embodiments and
aspects are described in detail herein and are considered a part
of the claimed aspects.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

One or more aspects are particularly pointed out and dis-
tinctly claimed as examples in the claims at the conclusion of

40

45

65

2

the specification. The foregoing and objects, features, and
advantages of one or more aspects are apparent from the
following detailed description taken in conjunction with the
accompanying drawings in which:

FIG. 1 depicts one embodiment of a processing environ-
ment to incorporate and use one or more aspects of a grouping
capability to group instructions;

FIG. 2 depicts further details of a processor of the process-
ing environment of FIG. 1;

FIG. 3 depicts one embodiment of an instruction pipeline
of'a processor of a processing environment;

FIG. 4A depicts one embodiment of decoders used to
decode instructions and provide optimizations;

FIG. 4B depicts one example of an optimization provided
by a decoder;

FIG. 4C depicts another example of an optimization pro-
vided by a decoder;

FIGS. 5A-5B depicts examples of group formation;

FIG. 6A depicts one embodiment of logic to form an
instruction group;

FIG. 6B depicts another embodiment of logic to form an
instruction group;

FIG. 6C depicts yet another embodiment of logic to form
an instruction group;

FIG. 7A depicts one embodiment of logic used to mark
instructions, in which the markings are used to group instruc-
tions;

FIG. 7B depicts one embodiment of logic to form an
instruction group based on the markings of FIG. 7A;

FIGS. 8A-8B depict examples of group formation;

FIG. 9 depicts another embodiment of logic to form an
instruction group;

FIG. 10A depicts another embodiment of logic used to
mark instructions;

FIG. 10B depicts one embodiment of forming an instruc-
tion group based on the marking of FIG. 10A;

FIG. 11 depicts one example of a decode logic used to form
groups of instructions and/or optimize groups of instructions;

FIG. 12 depicts one embodiment of a computer program
product;

FIG. 13 depicts one embodiment of a host computer sys-
tem;

FIG. 14 depicts a further example of a computer system;

FIG. 15 depicts another example of a computer system
comprising a computer network;

FIG. 16 depicts one embodiment of various elements of a
computer system,

FIG. 17 A depicts one embodiment of the execution unit of
the computer system of FIG. 16;

FIG. 17B depicts one embodiment of the branch unit of the
computer system of FIG. 16;

FIG. 17C depicts one embodiment of the load/store unit of
the computer system of FIG. 16; and

FIG. 18 depicts one embodiment of an emulated host com-
puter system to incorporate and use one or more aspects.

DETAILED DESCRIPTION

In accordance with one or more aspects, a grouping capa-
bility is provided that groups instructions into instruction
groups based on optimizations that may be performed. The
groups are formed, for instance, at decode or pre-decode time
(both of which are referred to herein as decode time), and
therefore, they are also referred to as decode groups. The
decode groups are formed, in one aspect, based on decode
time instruction optimizations that may be performed.

US 9,348,596 B2

3

This grouping capability may be used in many different
processing environments executing different processors. For
instance, it may be used with processors based on the z/Ar-
chitecture offered by International Business Machines Cor-
poration. One or more of the processors may be part of a
server, such as the System z server, which implements the
7/Architecture and is offered by International Business
Machines Corporation. One embodiment of the z/Architec-
ture is described in an IBM publication entitled, “z/Architec-
ture Principles of Operation,” IBM Publication No. SA22-
7832-09, Tenth Edition, September 2012, which is hereby
incorporated herein by reference in its entirety. In one
example, one or more of the processors executes an operating
system, such as the z/OS operating system, also offered by
International Business Machines Corporation. IBM, Z/AR-
CHITECTURE and Z/OS are registered trademarks of Inter-
national Business Machines Corporation, Armonk, N.Y,
USA. Other names used herein may be registered trademarks,
trademarks, or product names of International Business
Machines Corporation or other companies.

In a further embodiment, the processors are based on the
Power Architecture offered by International Business
Machines Corporation, and may be, for instance, Power 700
series processors. One embodiment of the Power Architecture
is described in “Power ISA Version 2.07,” International Busi-
ness Machines Corporation, May 3, 2013, which is hereby
incorporated herein by reference in its entirety. POWER
ARCHITECTURE is a registered trademark of International
Business Machines Corporation.

One particular example of a processing environment to
incorporate and use one or more aspects of the grouping
capability is described with reference to FIG. 1. In this par-
ticular example, the processing environment is based on the
Power Architecture offered by International Business
Machines Corporation, but this is only one example. One or
more aspects are applicable to other architectures offered by
International Business Machines Corporation or other com-
panies.

Referring to FIG. 1, a processing environment 100
includes, for instance, a central processing unit (CPU) 110,
which is coupled to various other components by an intercon-
nect 112, including, for example, a read-only memory (ROM)
116 that includes a basic input/output system (BIOS) that
controls certain basic functions of the processing environ-
ment, a random access memory (RAM) 114, an I/O adapter
118, and a communications adapter 120. I/O adapter 118 may
be a small computer system interface (SCSI) adapter that
communicates with a storage device 121. Communications
adapter 120 interfaces interconnect 112 with a network 122,
which enables processing environment 100 to communicate
with other systems, such as remote computer 124.

Interconnect 112 also has input/output devices connected
thereto via a user interface adapter 126 and a display adapter
136. Keyboard 128, trackball 130, mouse 132 and speaker
134 are all interconnected to bus 112 via user interface
adapter 126. Display 138 is connected to system bus 112 by
display adapter 136. In this manner, processing environment
100 receives input, for example, through keyboard 128, track-
ball 130, and/or mouse 132, and provides output, for example,
via network 122, on storage device 121, speaker 134 and/or
display 138, as examples. The hardware elements depicted in
processing environment 100 are not intended to be exhaus-
tive, but rather represent example components of a processing
environment in one embodiment.

Operation of processing environment 100 can be con-
trolled by program code, such as firmware and/or software,
which typically includes, for example, an operating system

10

15

20

25

30

35

40

45

50

55

60

65

4

such as AIX® (AIX is a trademark of International Business
Machines Corporation) and one or more application or
middleware programs. As used herein, firmware includes,
e.g., the microcode, millicode and/or macrocode of the pro-
cessor. It includes, for instance, the hardware-level instruc-
tions and/or data structures used in implementation of higher
level machine code. In one embodiment, it includes, for
instance, proprietary code that is typically delivered as micro-
code that includes trusted software or microcode specific to
the underlying hardware and controls operating system
access to the system hardware. Such program code comprises
instructions discussed below with reference to FIG. 2.

Referring to FIG. 2, further details of a processor 200 (e.g.,
central processing unit 110) of the processing environment
are discussed. In one example, the processor is a super-scalar
processor, which retrieves instructions from memory (e.g.,
RAM 114 of FIG. 1) and loads them into instruction sequenc-
ing logic (ISL) 204 of the processor. The instruction sequenc-
ing logic includes, for instance, a Level 1 Instruction cache
(L1 I-cache) 206, a fetch-decode unit 208, an instruction
queue 210 and a dispatch unit 212. In one example, the
instructions are loaded in L1 I-cache 206 of ISI. 204, and they
are retained in L1 I-cache 206 until they are required, or
replaced if they are not needed. Instructions are retrieved
from L1 I-cache 206 and, in one embodiment, are grouped
into instruction groups and decoded by fetch-decode unit 208.
After decoding a current instruction, the current instruction is
loaded into instruction queue 210. Dispatch unit 212 dis-
patches instructions from instruction queue 210 into register
management unit 214, as well as completion unit 221.
Completion unit 221 is coupled to general execution unit 224
and register management unit 214, and monitors when an
issued instruction has completed.

When dispatch unit 212 dispatches a current instruction,
unified main mapper 218 of register management unit 214
allocates and maps a destination logical register number to a
physical register within physical register files 232a-232xn that
is not currently assigned to a logical register. The destination
is said to be renamed to the designated physical register
among physical register files 232a-232#x. Unified main map-
per 218 removes the assigned physical register from a list 219
of free physical registers stored within unified main mapper
218. Subsequent references to that destination logical register
will point to the same physical register until fetch-decode unit
208 decodes another instruction that writes to the same logi-
cal register. Then, unified main mapper 218 renames the
logical register to a different physical location selected from
free list 219, and the mapper is updated to enter the new
logical-to-physical register mapper data. When the logical-
to-physical register mapper data is no longer needed, the
physical registers of old mappings are returned to free list
219. If free physical register list 219 does not have enough
physical registers, dispatch unit 212 suspends instruction dis-
patch until the needed physical registers become available.

After the register management unit 214 has mapped the
current instruction, issue queue 222 issues the current instruc-
tion to general execution engine 224, which includes execu-
tion units (EUs) 230a-230x. Execution units 230a-230% are
of various types, including, for instance, floating-point (FP),
fixed-point (FX), and load/store (LS). General execution
engine 224 exchanges data with data memory (e.g., RAM
114, ROM 116 of FIG. 1) via a data cache 234. Moreover,
issue queue 222 may contain instructions of floating point
type or fixed-point type, and/or load/store instructions. How-
ever, it should be appreciated that any number and types of
instructions can be used. During execution, EUs 230a-230n
obtain the source operand values from physical locations in

US 9,348,596 B2

5

register files 2324-232#n and store result data, if any, in register
files 232a-232r and/or data cache 234.

Register management unit 214 includes, for instance: (i)
mapper cluster 215, which includes architected register map-
per 216, unified main mapper 218, and intermediate register
mapper 220; and (ii) issue queue 222. Mapper cluster 215
tracks the physical registers assigned to the logical registers
of various instructions. In one embodiment, architected reg-
ister mapper 216 has 16 logical (i.e., not physically mapped)
registers of each type that store the last, valid (i.e., check-
pointed) state of logical-to-physical register mapper data.
However, it should be recognized that different processor
architectures can have more or less logical registers than
described in this embodiment. Further, architected register
mapper 216 includes a pointer list that identifies a physical
register which describes the checkpointed state. Physical reg-
ister files 2324-232n typically contain more registers than the
number of entries in architected register mapper 216. It
should be noted that the particular number of physical and
logical registers that are used in a renaming mapping scheme
can vary.

In contrast, unified main mapper 218 is typically larger
(typically contains up to 20 entries) than architected register
mapper 216. Unified main mapper 218 facilitates tracking of
the transient state of logical-to-physical register mappings.
The term “transient” refers to the fact that unified main map-
per 218 keeps track of tentative logical-to-physical register
mapping data as the instructions are executed out-of-order
(000). Out-of-order execution typically occurs when there
are older instructions which would take longer (i.e., make use
of'more clock cycles) to execute than newer instructions in the
pipeline. However, should an out-of-order instruction’s
executed result require that it be flushed for a particular rea-
son (e.g., a branch miss-prediction), the processor can revert
to the checkpointed state maintained by architected register
mapper 216 and resume execution from the last, valid state.

Unified main mapper 218 makes the association between
physical registers in physical register files 232a-232r and
architected register mapper 216. The qualifying term “uni-
fied” refers to the fact that unified main mapper 218 obviates
the complexity of custom-designing a dedicated mapper for
each of register files 232 (e.g., general-purpose registers
(GPRs), floating-point registers (FPRs), fixed-point registers
(FXPs), exception registers (XERs), condition registers
(CRs), etc.).

In addition to creating a transient, logical-to-physical reg-
ister mapper entry of an out-of-order instruction, unified main
mapper 218 also keeps track of dependency data (i.e., instruc-
tions that are dependent upon the finishing of an older instruc-
tion in the pipeline), which is used for instruction ordering.
Conventionally, once unified main mapper 218 has entered an
instruction’s logical-to-physical register translation, the
instruction passes to issue queue 222. Issue queue 222 serves
as the gatekeeper before the instruction is issued to execution
unit 230 for execution. As a general rule, an instruction cannot
leave issue queue 222 if it depends upon an older instruction
to finish. For this reason, unified main mapper 218 tracks
dependency data by storing the issue queue position data for
each instruction thatis mapped. Once the instruction has been
executed by general execution engine 224, the instruction is
said to have “finished” and is retired from issue queue 222.

Register management unit 214 may receive multiple
instructions from dispatch unit 212 in a single cycle so as to
maintain a filled, single issue pipeline. The dispatching of
instructions is limited by the number of available entries in
unified main mapper 218. In some mapper systems, which
lack intermediate register mapper 220, if unified main mapper

25

40

45

50

55

6

218 has a total of 20 mapper entries, there is a maximum of 20
instructions that can be in flight (i.e., not checkpointed) at
once. Thus, dispatch unit 212 can conceivably dispatch more
instructions than what can actually be retired from unified
main mapper 218. The reason for this bottleneck at the unified
main mapper 218 is due to the fact that, conventionally, an
instruction’s mapper entry could not retire from unified main
mapper 218 until the instruction “completed” (i.e., all older
instructions have “finished” executing).

However, in one embodiment, intermediate register map-
per 220 serves as a non-timing-critical register for which a
“finished,” but “incomplete” instruction from unified main
mapper 218 could retire to (i.e., removed from unified main
mapper 218) in advance of the instruction’s eventual comple-
tion. Once the instruction “completes,” completion unit 221
notifies intermediate register mapper 220 of the completion.
The mapper entry in intermediate register mapper 220 can
then update the architected coherent state of architected reg-
ister mapper 216 by replacing the corresponding entry that
was presently stored in architected register mapper 216.

Further details regarding one embodiment of the mappers
and processing associated therewith are described in U.S.
Publication Number 2013/0086361, entitled “Scalable
Decode-Time Instruction Sequence Optimization of Depen-
dent Instructions, Gschwind et al., published Apr. 4, 2013,
which is hereby incorporated herein by reference in its
entirety.

As referenced above, processor 200 employs pipelined
processing to execute the instructions fetched from memory.
Further details regarding one embodiment of this processing
are described with reference to FIG. 3, which depicts one
example of a processor pipeline. In one example, instructions
are fetched into an instruction fetch unit 300, which includes,
for instance, an instruction fetch (IF) 302, an instruction
cache (IC) 304 and a branch predictor 306. Instruction fetch
unit 300 is coupled to a group formation and decode unit 310,
which includes one or more decode stages (Dn) 312, as well
as a transfer stage (Xfer) 314 to transfer the decoded instruc-
tions to group dispatch (GD) 320. Group dispatch 320 is
coupled to mapping units (MP) 322 (such as architected reg-
ister mapper 216, unified main mapper 218, and/or interme-
diate register mapper 220 of FIG. 2), which are coupled to a
processing unit 330.

Processing unit 330 provides processing for different types
of instructions. For example, at 331, processing for an
instruction that includes a branch redirect (BR) 337 is
depicted, and includes, for instance, instruction issue (ISS)
332, register file read (RF) 334, execute (EX) 336, branch
redirect 337 to instruction fetch 302, write back (WB) 346,
and transfer (Xfer) 348; at 333, processing for a load/store
instruction is depicted that includes, for instance, instruction
issue 332, register file read 334, compute address (EA) 338,
data cache (DC) 340, format (FMT) 342, write back 346, and
transfer 348; at 335, processing for a fixed-point instruction is
depicted, and includes, for instance, instruction issue 332,
register file read 334, execute 336, write back 346, and trans-
fer 348; and at 337, processing for a floating point instruction
is depicted that includes, for instance, instruction issue 332,
register file read 334, six cycle floating point unit (F6) 344,
write back 346, and transfer 348. Processing for each type of
instruction transfers to group commit (CP) 350. The output of
group commit 350 is coupled to instruction fetch 302, in the
case of interrupts and flushes, as examples.

Further details regarding one embodiment of group forma-
tion and decode unit 310 are described with reference to
FIGS. 4A-4C. Referring to FIG. 4A, in one embodiment, a
plurality of decoders 402, 404, such as Decoder 0 and

US 9,348,596 B2

7

Decoder 1 (e.g., decoders 312 of FIG. 3), respectively, are
coupledto an instruction cache 400 that includes a plurality of
instructions. In one example, decoder 402 receives a first
instruction 0 (I0) from instruction cache 400 and decoder 404
receives a second instruction 1 (I1) from the cache. Each
decoder includes an instruction decoder 406, 408, respec-
tively, to perform initial decoding of the instructions and to
provide information 410, 412, 414 and 416 about the decod-
ing. For instance, information 414 and 416 are provided to an
optimization analysis engine (OAE) 418; and information
410 and 412 are provided to instruction optimizers 422, 420,
respectively.

In an embodiment, optimization analysis engine 418 com-
pares the decoded characteristics of the instructions in decod-
ers 402 and 404 to determine whether they correspond to one
of a plurality of compound sequences that are candidates for
optimization. Further, optimization analysis engine 418 is
responsive to a plurality of control signals to suppress the
recognition of compound sequences, e.g., when a configura-
tion bit is set. Configuration bits can correspond to implemen-
tation specific registers to disable decode time instruction
optimization (DTIO) for all or a subset of compound instruc-
tions when a design error has been detected, when a determi-
nation has been made that performing a DTIO sequence is no
longer advantageous, when a processor enters single-instruc-
tion (tracing) mode, and so forth. Optimization analysis
engine 418 can be a single entity as shown in FIG. 4A, or can
be replicated, distributed, split or otherwise integrated into
one or more of decoders 402 and 404. The optimization
analysis engine can be combined in a single large compound
decoder (e.g., including, but not limited to, a complex decoder
comprising optimization analysis engine 418, decoder 402
and decoder 404 in a single structure), to facilitate logic
optimization of circuit design improvements.

The optimization analysis engine provides information
indicating whether a compound sequence, which can be opti-
mized, has been detected, as well as information about the
nature of the sequence (e.g., which of a plurality of instruc-
tions, and/or specific properties of the sequence to be used by
the decoder optimization logic to generate an optimized
sequence). OAE also provides steering logic to a selector to
select one of an unoptimized internal operation (iop) gener-
ated by the initial decode operation, or an iop corresponding
to an iop in an optimized DTIO sequence which has been
generated by optimization logic under control of the OAE
control signals, and additional information received from
decoders having decoded a portion of a compound sequence
being optimized, such as register specifiers, immediate fields
and operation codes for example.

Optimization analysis engine 418 is coupled to instruction
optimizer 420 and instruction optimizer 422. Instruction opti-
mizer 420 receives operand and instruction information from
instruction decoder 408, and instruction optimizer 422
receives operand and instruction information from instruc-
tion decoder 406.

Additionally, instruction optimizer 420 and instruction
decoder 406 are coupled to selection logic 426, and instruc-
tion optimizer 422 and instruction decoder 408 are coupled to
selection logic 428. Optimization analysis engine 418 may
provide selection information 424 to selection logic 426, 428
for determining if the respective instructions 10 or I1 should
generate respective iop instructions (iop(0), iop(1)), or if an
optimized instruction should be used.

Further details of one embodiment of an optimizer 420 (or
optimizer 422) is described with reference to FIG. 4B. A first
instruction 450 and a next sequential instruction 452 are
determined to be candidates for optimization 454. The first

10

15

20

25

30

35

40

45

50

55

60

65

8

instruction 450 includes an opcode (OP1), a source register
field (RA1), an immediate field (I1), and a result target field
(RT1). The next sequential instruction 452 includes an
opcode (OP2), a source register field (RA2), an immediate
field (I2), and a result target field (RT2). If they are not
optimizable according to a predefined optimization criterion,
they are executed in order (OP1 456 then OP2 458). If, how-
ever, they meet the criterion (including, e.g., that RT1=RA2),
the next sequential instruction is modified by optimizer 420 to
include a concatenated value of 11 and 12 to provide a new
next sequential instruction 462 that can be executed out-of-
order relative to the first instruction 460. In one embodiment,
the modified next sequential instruction has a new effective
opcode (OP2x).

Another embodiment of an optimizer 420 (or optimizer
422)is depicted in FIG. 4C. In this example, a first instruction
470 and a next sequential instruction 472 are determined to be
candidates for optimization 474. The first instruction 470
includes an opcode (OP1), a source register field (RA1),
another source register field (RB1), and a result target field
(RT1). The next sequential instruction 472 includes an
opcode field (OP2), a source register field (RA2), another
source register field (RB2), and a result target field (RT2). If
they are not optimizable according to the predefined optimi-
zation criterion, they are executed in order (OP1 480 then
OP2 482). If, however, they meet the criterion (including,
e.g., that RT1=RA2), the next sequential instruction is modi-
fied by optimizer 420 to include RB1 to produce a new next
sequential instruction 478 that can be executed out-of-order
relative to the first instruction 476. In one embodiment, the
modified next sequential instruction has a new effective
opcode (OP2x).

As described herein, one form of optimization is decode
time instruction optimization in which instructions in a group
of instructions are optimized at decode time or pre-decode
time (both of which are referred to herein as decode time). A
group of instructions includes one or more instructions, and in
the embodiments described herein, a group includes up to
four instructions. However, in other embodiments, a group
may include more or less instructions than the examples
described herein.

The formation of groups, referred to as group formation or
decode group formation, has limited the ability to optimize
instructions when the instructions span multiple decode
groups. For instance, assume that an add immediate shift
(addis) instruction is typically optimized with a load instruc-
tion (1d). If; as shown in FIG. 5A, the addis instruction is in
Group 1 and the load instruction is in Group 2, the instruc-
tions are not optimized, in this embodiment, since they are in
different groups. Thus, even though in one optimization cri-
terion, when an add immediate shift (addis) instruction is
followed by a load (Id) instruction, optimization is per-
formed; in this scenario, it is not, since the instructions are in
different decode groups. However, in accordance with one
aspect, the groups are reformed to enable the optimization of
the addis instruction from Group 1 with the load instruction
from Group 2, as depicted in FIG. 5B.

Further details regarding group formation are described
with reference to FIGS. 6A-6B. Initially, one example of
forming groups without taking into consideration whether the
instructions can be optimized (referred to herein as optimiza-
tion candidacy) is described with reference to FIG. 6A. Then,
one example of forming groups based on optimization can-
didacy, in accordance with one or more aspects, is described
with reference to FIG. 6B.

Referring to FIG. 6A, in one embodiment, a new empty
group is started, STEP 600. Then, a fetched instruction is

US 9,348,596 B2

9

added to the instruction group, STEP 602, and a determina-
tion is made as to whether there are more instruction slots in
the group, INQUIRY 604. If there are more instruction slots
in the group (e.g., less than 4 instructions have been added
thus far), then processing continues with adding an instruc-
tion to the instruction group, STEP 602. However, if there are
no more instruction slots in the group, then the instruction
group is sent through the pipeline for further processing,
STEP 606. Additionally, a determination is made as to
whether there are more instructions to be processed,
INQUIRY 608. Ifthere are more instructions, then processing
continues with STEP 600. Otherwise, group formation is
complete.

In the particular embodiment described with reference to
FIG. 6A, groups are formed based on whether there are
instruction slots available in the groups with no regard for the
instructions and whether optimization may be provided.
However, with reference to FIG. 6B, one embodiment of
group formation is described in which an instruction group is
formed based on whether instructions may be optimized, such
as by decode time instruction optimization (DTIO).

Referring to FIG. 6B, in accordance with one aspect, a new
empty instruction group is started, STEP 650, and a fetched
instruction is added to the instruction group, STEP 652. A
determination is then made as to whether there are more
instruction slots in the group, INQUIRY 654. If there are
more instruction slots in the group, then the next two or more
instructions that have been fetched are analyzed to determine
whether they form an optimization sequence, INQUIRY 656.
For instance, predefined optimization criteria are used to
determine whether the instructions may be optimized (e.g., an
addis instruction followed by a load instruction). In one
example, the optimization is a decode time instruction opti-
mization (DTIO), and therefore the optimization sequence
may be referred to herein as a DTIO sequence, or a DTIO
candidate or a DTIO candidate sequence (i.e., a candidate for
DTIO optimization). If the next instructions do not form an
optimization sequence, then processing continues with STEP
652. However, if the next instructions are a candidate for
optimization, then a new group is started and the instructions
of that optimization sequence are added to that new group,
STEP 650.

Returning to INQUIRY 654, if there are no more instruc-
tion slots in the group, then the instruction group is sent
through the pipeline for further processing, STEP 658. This
processing includes, for instance, further decoding, perform-
ing optimizations, and/or executing one or more instructions
associated with the group (e.g., an instruction of the group
and/or an optimized instruction associated with the group, as
examples). Further, a determination is made as to whether
there are more instructions to be processed, INQUIRY 660. If
there are more instructions to be processed, then processing
continues with STEP 650. Otherwise, this embodiment of the
decode group formation is complete.

In the embodiment described above, the instructions are
analyzed to determine whether the next sequential instruc-
tions form an optimization sequence, such as a DTIO
sequence. However, in another embodiment, the analysis is
reduced by simply making a determination as to whether the
next instruction represents the beginning of a possible or
potential optimization sequence. For instance, if the next
instruction is an addis instruction, then it is assumed that there
is an optimization sequence without analyzing the instr-
uction(s) after the addis instruction. If the next instruction
represents the beginning of a possible optimization sequence,
then a new group is started. One embodiment of this logic is
described with reference to FIG. 6C.

10

15

20

25

30

35

40

45

50

55

60

65

10

In this embodiment, a new empty group is started, STEP
670, and a fetched, instruction is added to the instruction
group, STEP 672. Then, a determination is made as to
whether there are more instruction slots available in the
group, INQUIRY 674. If there are more instruction slots in
the group, then a further determination is made as to whether
the next instruction represents the beginning of a possible
optimization sequence, INQUIRY 676. For instance, is this
the type of instruction that might participate in optimization,
such as an addis instruction. In one example, a data structure
may be referenced that lists such instructions or parameters
for such instructions, and/or predefined optimization criteria
may be used to make this determination.

If it is determined that the instruction is not the beginning
of'a possible optimization sequence, then processing contin-
ues to STEP 672, in which the instruction is added to the
instruction group. However, if the next instruction does rep-
resent the beginning of a possible optimization sequence,
then a new group is started, STEP 670.

Returning to INQUIRY 674, if there are no more instruc-
tion slots in the group, then the instruction group is sent
through the pipeline for further processing, STEP 678. Addi-
tionally, a determination is made as to whether there are more
instructions to be processed, INQUIRY 680. If there are more
instructions, then processing continues with STEP 670. Oth-
erwise, this embodiment of the decode group formation tech-
nique is complete.

Although the steps in FIGS. 6 A-6C are shown sequentially,
one skilled in the art will recognize that one or more of the
steps may be executed in parallel. This is also true for other
logic diagrams described herein.

The creation of a new group each time an instruction rep-
resents a beginning of an optimization sequence or the begin-
ning of a possible optimization sequence may cause poor
group formation quality, if it is performed too aggressively.
For instance, assume the last slot in a group is to include an
add immediate shift instruction (addis), and it is decided that
when an addis instruction is fetched, a new group is to be
started. Thus, the last slot of the group is empty and a new
group is started. However, the next instruction is a subtract
instruction which would not be optimized with the add imme-
diate shift instruction. Now, group 1 has an empty slot, for no
reason. Thus, in accordance with one aspect, the starting of an
optimization group is marked in the cache on an I-fetch load.
Thus, instead of analyzing the candidate sequence each time
the instructions are fetched into the processor, a candidate
optimization sequence is identified by storing additional
information into the instruction cache. Then, when the I-fetch
logic fetches an instruction, it would obtain a marker along-
side with the instruction that indicates, for instance, that such
an instruction is considered a first instruction in an optimiza-
tion sequence. In one embodiment, the instruction may be
marked as the first instruction in an optimization sequence,
even if this has not been completely determined, but it is a
possibility. For instance, if it is decided to only perform
partial analysis before making the indication, but based on
this partial analysis, it is believed the instruction may be the
first instruction in an optimization sequence, it is marked as
the beginning of an optimization sequence. The marking
reduces processing overhead to analyze the candidate
sequences, and may allow other more exhaustive analysis to
be performed.

One embodiment of the logic associated with marking the
instructions is described with reference to FIG. 7A. Initially,
instructions are received from the next level of the cache
hierarchy or from system memory, as examples, STEP 700. A
determination is made as to whether the instruction represents

US 9,348,596 B2

11

or is considered the start of an optimization sequence,
INQUIRY 702. This may be determined by predefined crite-
ria, a data structure that includes lists of such instructions or
parameters describing such instructions, or by other means.

If the instruction does not represent the start of an optimi-
zation sequence, then the instruction is marked as such (e.g.,
not starting a DTIO sequence), STEP 704. The instruction is
then placed in the I-cache along with its marker, STEP 706.

Returning to INQUIRY 702, if the instruction represents
the start of an optimization sequence, then the instruction is
marked as starting an optimization sequence, such as a DTIO
sequence, STEP 708. In one embodiment, an instruction is
marked as an optimization or DTIO sequence if it is to be
subject to further analysis during decode. Processing contin-
ues to STEP 706, in which the instruction is placed in the
cache with its marker. The markers are then used during
decode group formation, as described with reference to FIG.
7B.

Referring to FIG. 7B, in one embodiment, initially, a new
empty group is started, STEP 730. Then, a fetched instruction
is added to the instruction group, STEP 732. A determination
is made as to whether there are more instruction slots in the
group, INQUIRY 734. If there are more instruction slots in
the group, then a determination is made as to whether the next
instruction is marked as the beginning of an optimization
sequence, INQUIRY 736. If not, then processing continues to
STEP 732, in which the instruction is added to the instruction
group. Otherwise, processing continues with STEP 730 in
which a new empty group is started.

Returning to INQUIRY 734, if there are no more instruc-
tion slots in the group, then processing continues with send-
ing the instruction group through the pipeline for further
processing, STEP 738. Further, a determination is made as to
whether there are more instructions to be processed,
INQUIRY 740. If so, then processing continues with STEP
730. Otherwise, processing is complete.

In one embodiment, the start of a new group for each
beginning of an optimization sequence may cause poor group
formation. For instance, as shown in FIG. 8A, without the
logic of starting a new group at each instruction that is con-
sidered a start of an optimization sequence, the first group
includes the add immediate shift instruction, as well as the
load instruction; and the second group includes instructions
i5 thru i8. However, in accordance with one aspect, if a new
group is started for each optimization sequence, then a new
group is started at the add immediate shift instruction, as
shown in FIG. 8B. In this scenario, there are two unused slots
in the first group, which was not necessary since the two
instructions of the optimization sequence fit into the first
group.

Thus, in one embodiment, logic is performed to not nec-
essarily start anew group for the beginning of an optimization
sequence, but, instead, only for those that fail to fit into a
group. One embodiment of this logic is described with refer-
enceto FIG. 9. As shown, a new empty group is started, STEP
900, and a fetched instruction is added to the instruction
group, STEP 902. Then, a determination is made as to
whether there are more instruction slots in the group,
INQUIRY 904. If there are more instruction slots in the
group, then a further determination is made as to whether the
next instruction forms an optimization candidate (e.g., based
on the markings, analysis, or by other techniques), INQUIRY
906. If not, then processing continues with STEP 902 and the
instruction is added to the instruction group. However, if the
next instructions form an optimization candidate, then a fur-
ther determination is made as to whether that candidate
sequence will fit in the current group, INQUIRY 908. If it will

10

15

20

25

30

35

40

45

50

55

60

65

12

fit, then processing continues to STEP 902 in which the
instruction is added to the group. Thus, in this example, the
instructions of the candidate sequence will be placed in the
current group. However, if the candidate sequence does not fit
in the current group, then processing continues with STEP
900 in which a new group is created that will include the
optimization sequence.

Returning to INQUIRY 904, if there are no more instruc-
tion slots in the group, then the instruction group is sent
through the pipeline for further processing, STEP 910. Fur-
ther, a determination is made as to whether there are more
instructions to be processed, INQUIRY 912. If there are more
instructions to be processed, then processing continues with
STEP 900. Otherwise, this aspect of decode logic is complete.

In yet a further embodiment, the possible start of an opti-
mization group is marked in the cache when instructions are
fetched into the cache and annotated with the length of the
optimization sequence (e.g., the number of instructions in the
optimization sequence). This information may then be used in
group formation.

One embodiment of marking an optimization sequence or
possible optimization sequence is described with reference to
FIG. 10A. Initially, instructions are received from the next
level of the cache hierarchy or from system memory, as
examples, STEP 1000. A determination is made as to whether
the instruction represents the start of an optimization
sequence, INQUIRY 1002. If it does not represent the start of
an optimization sequence, then the instruction is so marked,
e.g., as not starting a DTIO sequence, STEP 1004. The
instruction is then placed into the I-cache, along with its
marker information, including whether it is the start of an
optimization sequence and the length of the sequence, STEP
1006.

Returning to INQUIRY 1002, if the instruction represents
the start of an optimization sequence, then the instruction is
marked as such, e.g., as starting a DTIO, including the length,
STEP 1008, and processing continues to STEP 1006, in
which the instructions are placed in the cache with the marker
(e.g., DTIO and length).

One embodiment of the logic of using the annotated
instruction cache that includes the optimization sequence
length is described with reference to FIG. 10B. Initially, an
empty group is started, STEP 1030. Then, a fetched instruc-
tion is added to the instruction group, STEP 1032. A further
determination is made as to whether there are more instruc-
tion slots in the group, INQUIRY 1034. If so, then a further
determination is made as to whether the next instruction is
annotated as a start of an optimization sequence, INQUIRY
1036. If the next instruction is not so annotated, then process-
ing continues with STEP 1032 in which the instruction is
added to the instruction group. However, if the next instruc-
tion is annotated as a start of an optimization sequence, then
a further determination is made as to whether the candidate
sequence of which the instruction is a part will fit entirely into
the current group based on the pre-decode information (e.g.,
the sequence length), INQUIRY 1038. If it will fit into the
current group, then processing continues with STEP 1032 in
which the instruction is added to the group. Otherwise, pro-
cessing continues to STEP 1030 in which a new group is
started that will include the candidate sequence.

Returning to INQUIRY 1034, if there are no more instruc-
tion slots in the group, then the instruction group is sent
through the pipeline for further processing, STEP 1040. Fur-
ther, a determination is made as to whether there are more
instructions to be processed, INQUIRY 1042. If there are
more instructions to be processed, then processing continues
with STEP 1030. Otherwise this processing is complete.

US 9,348,596 B2

13

As described above, in one embodiment, an optimization
candidate sequence is completely contained in a particular
decode group. The detection and processing of candidate
sequences, in one embodiment, follow or use one or more
templates. If there are multiple templates that can be applied,
then the templates are prioritized.

A template is identified by a number of instructions that are
to be present in the instruction stream. A template may
include an input, a condition, and/or an output. The input is a
sequence of instructions that are to be present. In one embodi-
ment, the instructions to be optimized by a template are
adjacent; i.e., without intervening instructions; however, in
another embodiment, intervening instructions that do not ref-
erence or interfere with the operands ofthe template sequence
are included. Instruction opcodes and formats are to match
those of the specified instructions. There are relationships of
operands, such that all like-named operands are to match
(e.g., if operand <R1> occurs in several locations of a tem-
plate, all associated operand fields are to match the same).
Variables indicated by literals (i.e., a value directly repre-
sented, e.g., as a register number, a numeric value, or other
directly specified operand) are to have the value indicated by
the literal represented directly in the instruction.

Optionally, a template condition that specifies a condition
to be met may be provided. Example conditions include that
a constant specified by an instruction is to be a positive, or
registers are to be paired, etc., for a template to be applicable.

The template output specifies an optimized output
sequence that includes one or more internal instructions,
referred to as internal operations (iops), and operands. They
can specify operand fields from the template; functions to
generate new fields, values, etc. as appropriate; and/or can
specify values to be retained in conjunction with a continua-
tion sequence number.

Generally, in one embodiment, the optimization of candi-
date sequences that are represented by templates may have a
particular syntax. For instance, if instruction 1 equals instruc-
tion one of a first candidate sequence (il1=csl.i1) and instruc-
tion two equals instruction two of'the first candidate sequence
(12=cs1.11) and there are relationships between a source (src
(12)) and a destination (dst (il)), then the optimization
sequence is equal to the optimization for the first candidate
sequence with instructions il and i2. If this is not true, then
internal instruction 1 is the decode of i1 and internal instruc-
tion 2 is the decode of i2. This is shown, as follows:

If (il=csl.il) and (i2=cs1.i2) and src (i2) = dst (i1) then
iop__sequence = perform__cs1_ dtio (i1,i2)

Else
iopl=decode (i1)
iop2=decode (i2).

One specific template example in which two 16 bit imme-
diate fields are combined into a single 32 bit immediate field
by concatenating and taking into account the implicit sign
extension performed by an add immediate shift (addis)
instruction/add immediate (addi) instruction on displacement
is as follows:

Template: (destructive (i.e., overwriting) addis/addi sequence)
il = addis <rl1>, <r2>, <upper>
12 = addi <rl1>, <r2>, <lower>

=> optimization:
addi32 <rl>, <r2>, combine(<upper>,<lower>)

10

15

20

25

30

35

40

45

50

55

60

65

14

Templates can be translated to VHDL (Very high speed
integrated circuits Hardware Description Language) code,
either manually or by a tool. The code is to match the instruc-
tions of the template(s); match dependency/operand reuse
relationships; and/or generate associated outputs.

One example of VHDL code for the above template is:

IF opcode (i1) = OP_ADDIS AND RT(i1) = RT(i2) AND RT(il) =
RS1(i2) AND opcode(i2) = ADDI THEN

ilout_op <=IOP__ADDI32;

ilout_rt <= RT(il);

ilout_rsl <=RS1(il);

ilout_imm <= combine (si16(il), si(i2));

i2out_op <=IOP_NOP_ ORI;
ELSIF opcode(il) = ... -- other templates

ELSE
ilout_op <= iop(opcode(il);

i2out__op <= iop(opcode(i2));

ENDIF

In at least one embodiment, a candidate sequence with x
instructions has fewer instructions than a decode group with
y instructions. Thus, in one embodiment, VHDL code can be
automatically generated from a template where the same
candidate sequence is detected and optimized at the first
instruction, the second instruction, etc. up to the (y-x)th
instruction.

In a further template example, more than one instruction
may be outputted by the optimization, as shown below:

Template: (non-destructive addis/addi sequence)
il = addis <r1>, <r2>, <upper>
i2 = addi <r3>, <r1>, <lower>
=> optimization:
addis <rl>, <r2>, <upper>
addi32 <r3>, <r2>, combine(<upper>,<lower>)

This template combines two 16 bit immediate fields into a
single 32 bit immediate field by concatenating and taking into
account the implicit sign extension performed by addis/addi
on displacement. This form generates an intermediate result
forrl because it is not overwritten (not destroyed) by the next
instruction in the template. In one embodiment, templates
have parallel semantics, and input logical registers are to be
renamed without reference to any output rename registers
allocated by rename logic for target registers.

Although in the examples above, two instruction
sequences are shown, other sequences may include more than
two instructions and still be included in the same decode
group. One example of an n (e.g., 3) instruction candidate
sequence includes, for instance: addpcis+r4, pc, upper; addi
r4, r4, lower; and lvx*vr2, r0, r4. This sequence may be
represented in the following template:

il = addpcis+ <rl>, <r2>, <upper>
i2 = addi <r1>, <rl>, <lower>
i3 = lvx* <vrt>, 10, <rl>
=> optimization:
Ivd <vrt>, pc_or_ gpr(<r2>), combined (<upper>, <lower>)

The addpcis instruction is to provide program counter (PC)
relative addressing in a particular architecture, such as the
POWER ISA. The addpcis instruction is similar to addis, but
introduces the value of the PC, rather than the constant O,
when the RA field has a value 0. The pc_or_gpr function

US 9,348,596 B2

15

handles expanding the PC special case, since the Ivd case
would otherwise handle the RA operand similar to all other
RA operands as a 0 value representing 0, and the other register
values representing that logical register. L.vd is not an archi-
tected instruction of, for instance, the POWER architecture,
but it is used as an internal operation that describes a load
instruction with an implementation defined displacement. In
one example, lvx* is an instruction form that defines the base
register (e.g., 4 in this example) as having an unspecified
value after execution of the instruction. In one example, the
Ivx* is new form of the Ivx instruction indicating a last use of
at least one register (e.g., defined herein to be the register
indicated as <r1> in the template).

One embodiment of a decoder that includes templates to be
used in detecting and/or processing instruction sequences,
including performing optimizations, is described with refer-
ence to FIG. 11. In this example, instruction decode logic
1100 is coupled to an instruction fetch unit 1102 and one or
more execution units 1104. The instruction fetch unit
includes instruction fetch logic 1106, which references an
instruction address register (JAR) 1108. The instruction fetch
logic fetches instructions from instruction cache 1$ 1110 that
are forwarded to the decode unit.

The decode unit includes, for instance, buffers 1114 to
accept the instructions. Buffers 1114 are coupled to a group
formation unit 1116. Group formation 1116 is coupled to
group decode 1120, which includes template detect logic
1122, template optimization 1123 and legacy decode logic
1126. Template detect logic 1122, template optimization
1123 and legacy decode 1126 are coupled to a selector 1128.
Template detect 1122 is further coupled to end of decode
group (EODG) storage 1130 that stores retained information
regarding instructions in a decode group. In one embodiment,
the information is for a thread and is associated with a thread
ID. End of decode group storage 1130 is also coupled to
storage 1132 that maintains the thread id for multithreaded
environments.

Template detect 1122 is used to determine whether there is
a template indicating an optimization for selected instruc-
tions, and template optimization is used to perform optimi-
zations based on the templates. Selector 128 selects the
instructions to be executed (e.g., optimized or not).

Group formation 116 of instruction decode logic 1100 is
used in forming groups, based on the templates, and/or per-
forming optimizations at decode time.

Described in detail above are various techniques for form-
ing groups of instructions. One or more of the techniques
takes into consideration whether instructions may be opti-
mized if grouped a certain way, as well as optimizations for
the groups themselves (e.g., not needlessly leaving slots
empty, etc.).

In the logic diagrams that are described herein that have
multiple parts (e.g., FIGS. 7A-7B, 10A-10B, etc.), in a further
embodiment, the parts may be combined into one flow. Addi-
tionally, although various steps are shown sequentially, in
further embodiments, certain steps may be performed in par-
allel. Other variations are also possible.

As will be appreciated by one skilled in the art, one or
aspects may be embodied as a system, method or computer
program product. Accordingly, one or more aspects may take
the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system”. Furthermore, one or
more aspects may take the form of a computer program prod-

20

30

40

45

55

16

uct embodied in one or more computer readable medium(s)
having computer readable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be acomputer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium include the following: an electrical connection hav-
ing one or more wires, a portable computer diskette, a hard
disk, a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

Referring now to FIG. 12, in one example, a computer
program product 1200 includes, for instance, one or more
non-transitory computer readable storage media 1202 to store
computer readable program code means or logic 1204
thereon to provide and facilitate one or more aspects.

Program code embodied on a computer readable medium
may be transmitted using an appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
one or more aspects may be written in any combination of one
or more programming languages, including an object ori-
ented programming language, such as Java, Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language, assembler or
similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

One or more aspects are described herein with reference to
flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments. It will be understood that each block of
the flowchart illustrations and/or block diagrams, and com-
binations of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc-
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of

US 9,348,596 B2

17

manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of one or more
aspects. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

In addition to the above, one or more aspects may be
provided, offered, deployed, managed, serviced, etc. by a
service provider who offers management of customer envi-
ronments. For instance, the service provider can create, main-
tain, support, etc. computer code and/or a computer infra-
structure that performs one or more aspects for one or more
customers. In return, the service provider may receive pay-
ment from the customer under a subscription and/or fee
agreement, as examples. Additionally or alternatively, the
service provider may receive payment from the sale of adver-
tising content to one or more third parties.

In one aspect, an application may be deployed for perform-
ing one or more aspects. As one example, the deploying of an
application comprises providing computer infrastructure
operable to perform one or more aspects.

As a further aspect, a computing infrastructure may be
deployed comprising integrating computer readable code into
a computing system, in which the code in combination with
the computing system is capable of performing one or more
aspects.

As yet a further aspect, a process for integrating computing
infrastructure comprising integrating computer readable code
into a computer system may be provided. The computer sys-
tem comprises a computer readable medium, in which the
computer medium comprises one or more aspects. The code
in combination with the computer system is capable of per-
forming one or more aspects.

Although various embodiments are described above, these
are only examples. For example, processing environments of
other architectures can incorporate and use one or more
aspects. Additionally, instruction groups of different sizes
may be formed, and/or changes may be made to the formation
techniques. Further, other types of templates may be used.
Many variations are possible.

30

35

40

45

60

18

Further, other types of computing environments can benefit
from one or more aspects. As an example, a data processing
system suitable for storing and/or executing program code is
usable that includes at least two processors coupled directly
or indirectly to memory elements through a system bus. The
memory elements include, for instance, local memory
employed during actual execution of the program code, bulk
storage, and cache memory which provide temporary storage
of at least some program code in order to reduce the number
of times code must be retrieved from bulk storage during
execution.

Input/output or I/O devices (including, but not limited to,
keyboards, displays, pointing devices, DASD, tape, CDs,
DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening
1/O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modems, and Ethernet cards are just a
few of the available types of network adapters.

Referring to FIG. 13, representative components of a Host
Computer system 5000 to implement one or more aspects are
portrayed. The representative host computer 5000 comprises
one or more CPUs 5001 in communication with computer
memory (i.e., central storage) 5002, as well as 1/O interfaces
to storage media devices 5011 and networks 5010 for com-
municating with other computers or SANs and the like. The
CPU 5001 is compliant with an architecture having an archi-
tected instruction set and architected functionality. The CPU
5001 may have dynamic address translation (DAT) 5003 for
transforming program addresses (virtual addresses) into real
addresses of memory. A DAT typically includes a translation
lookaside buffer (TLB) 5007 for caching translations so that
later accesses to the block of computer memory 5002 do not
require the delay of address translation. Typically, a cache
5009 is employed between computer memory 5002 and the
processor 5001. The cache 5009 may be hierarchical having a
large cache available to more than one CPU and smaller,
faster (lower level) caches between the large cache and each
CPU. In some implementations, the lower level caches are
split to provide separate low level caches for instruction fetch-
ing and data accesses. In one embodiment, an instruction is
fetched from memory 5002 by an instruction fetch unit 5004
via a cache 5009. The instruction is decoded in an instruction
decode unit 5006 and dispatched (with other instructions in
some embodiments) to instruction execution unit or units
5008. Typically several execution units 5008 are employed,
for example an arithmetic execution unit, a floating point
execution unit and a branch instruction execution unit. The
instruction is executed by the execution unit, accessing oper-
ands from instruction specified registers or memory as
needed. Ifan operand is to be accessed (loaded or stored) from
memory 5002, a load/store unit 5005 typically handles the
access under control of the instruction being executed.
Instructions may be executed in hardware circuits or in inter-
nal microcode (firmware) or by a combination of both.

As noted, a computer system includes information in local
(or main) storage, as well as addressing, protection, and ref-
erence and change recording. Some aspects of addressing
include the format of addresses, the concept of address
spaces, the various types of addresses, and the manner in
which one type of address is translated to another type of
address. Some of main storage includes permanently
assigned storage locations. Main storage provides the system
with directly addressable fast-access storage of data. Both

US 9,348,596 B2

19

data and programs are to be loaded into main storage (from
input devices) before they can be processed.

Main storage may include one or more smaller, faster-
access buffer storages, sometimes called caches. A cache is
typically physically associated with a CPU or an 1/O proces-
sor. The effects, except on performance, of the physical con-
struction and use of distinct storage media are generally not
observable by the program.

Separate caches may be maintained for instructions and for
data operands. Information within a cache is maintained in
contiguous bytes on an integral boundary called a cache block
or cache line (or line, for short). A model may provide an
EXTRACT CACHE ATTRIBUTE instruction which returns
the size of a cache line in bytes. A model may also provide
PREFETCH DATA and PREFETCH DATA RELATIVE
LONG instructions which effects the prefetching of storage
into the data or instruction cache or the releasing of data from
the cache.

Storage is viewed as a long horizontal string of bits. For
most operations, accesses to storage proceed in a left-to-right
sequence. The string of bits is subdivided into units of eight
bits. An eight-bit unit is called a byte, which is the basic
building block of all information formats. Each byte location
in storage is identified by a unique nonnegative integer, which
is the address of that byte location or, simply, the byte address.
Adjacent byte locations have consecutive addresses, starting
with 0 on the left and proceeding in a left-to-right sequence.
Addresses are unsigned binary integers and are 24, 31, or 64
bits.

Information is transmitted between storage and a CPU or a
channel subsystem one byte, or a group of bytes, at a time.
Unless otherwise specified, in, for instance, the z/Architec-
ture®, a group of bytes in storage is addressed by the lefimost
byte of the group. The number of bytes in the group is either
implied or explicitly specified by the operation to be per-
formed. When used in a CPU operation, a group of bytes is
called a field. Within each group of bytes, in, for instance, the
7/Architecture®, bits are numbered in a left-to-right
sequence. In the z/Architecture®, the leftmost bits are some-
times referred to as the “high-order” bits and the rightmost
bits as the “low-order” bits. Bit numbers are not storage
addresses, however. Only bytes can be addressed. To operate
on individual bits of a byte in storage, the entire byte is
accessed. The bits in a byte are numbered O through 7, from
left to right (in, e.g., the z/Architecture). The bits in an address
may be numbered 8-31 or 40-63 for 24-bit addresses, or 1-31
or 33-63 for 31-bit addresses; they are numbered 0-63 for
64-bit addresses. Within any other fixed-length format of
multiple bytes, the bits making up the format are consecu-
tively numbered starting from 0. For purposes of error detec-
tion, and in preferably for correction, one or more check bits
may be transmitted with each byte or with a group of bytes.
Such check bits are generated automatically by the machine
and cannot be directly controlled by the program. Storage
capacities are expressed in number of bytes. When the length
of'a storage-operand field is implied by the operation code of
an instruction, the field is said to have a fixed length, which
can be one, two, four, eight, or sixteen bytes. Larger fields
may be implied for some instructions. When the length of a
storage-operand field is not implied but is stated explicitly, the
field is said to have a variable length. Variable-length oper-
ands can vary in length by increments of one byte (or with
some instructions, in multiples of two bytes or other mul-
tiples). When information is placed in storage, the contents of
only those byte locations are replaced that are included in the

10

15

20

25

30

35

40

45

50

55

60

65

20

designated field, even though the width of the physical path to
storage may be greater than the length of the field being
stored.

Certain units of information are to be on an integral bound-
ary in storage. A boundary is called integral for a unit of
information when its storage address is a multiple of the
length of the unitin bytes. Special names are given to fields of
2,4, 8, and 16 bytes on an integral boundary. A halfword is a
group of two consecutive bytes on a two-byte boundary and is
the basic building block of instructions. A word is a group of
four consecutive bytes on a four-byte boundary. A double-
word is a group of eight consecutive bytes on an eight-byte
boundary. A quadword is a group of 16 consecutive bytes on
a 16-byte boundary. When storage addresses designate half-
words, words, doublewords, and quadwords, the binary rep-
resentation of the address contains one, two, three, or four
rightmost zero bits, respectively. Instructions are to be on
two-byte integral boundaries. The storage operands of most
instructions do not have boundary-alignment requirements.

On devices that implement separate caches for instructions
and data operands, a significant delay may be experienced if
the program stores into a cache line from which instructions
are subsequently fetched, regardless of whether the store
alters the instructions that are subsequently fetched.

In one embodiment, the invention may be practiced by
software (sometimes referred to licensed internal code, firm-
ware, micro-code, milli-code, pico-code and the like, any of
which would be consistent with one or more aspects the
present invention). Referring to FIG. 13, software program
code which embodies one or more aspects may be accessed
by processor 5001 of the host system 5000 from long-term
storage media devices 5011, such as a CD-ROM drive, tape
drive or hard drive. The software program code may be
embodied on any of a variety of known media for use with a
data processing system, such as a diskette, hard drive, or
CD-ROM. The code may be distributed on such media, or
may be distributed to users from computer memory 5002 or
storage of one computer system over a network 5010 to other
computer systems for use by users of such other systems.

The software program code includes an operating system
which controls the function and interaction of the various
computer components and one or more application programs.
Program code is normally paged from storage media device
5011 to the relatively higher-speed computer storage 5002
where it is available for processing by processor 5001. The
techniques and methods for embodying software program
code in memory, on physical media, and/or distributing soft-
ware code via networks are well known and will not be further
discussed herein. Program code, when created and stored on
a tangible medium (including but not limited to electronic
memory modules (RAM), flash memory, Compact Discs
(CDs), DVDs, Magnetic Tape and the like is often referred to
as a “computer program product”. The computer program
product medium is typically readable by a processing circuit
preferably in a computer system for execution by the process-
ing circuit.

FIG. 14 illustrates a representative workstation or server
hardware system in which one or more aspects may be prac-
ticed. The system 5020 of FIG. 14 comprises a representative
base computer system 5021, such as a personal computer, a
workstation or a server, including optional peripheral
devices. The base computer system 5021 includes one or
more processors 5026 and a bus employed to connect and
enable communication between the processor(s) 5026 and the
other components of the system 5021 in accordance with
known techniques. The bus connects the processor 5026 to
memory 5025 and long-term storage 5027 which can include

US 9,348,596 B2

21

a hard drive (including any of magnetic media, CD, DVD and
Flash Memory for example) or a tape drive for example. The
system 5021 might also include a user interface adapter,
which connects the microprocessor 5026 via the bus to one or
more interface devices, such as a keyboard 5024, a mouse
5023, a printer/scanner 5030 and/or other interface devices,
which can be any user interface device, such as a touch
sensitive screen, digitized entry pad, etc. The bus also con-
nects a display device 5022, such as an LCD screen or moni-
tor, to the microprocessor 5026 via a display adapter.

The system 5021 may communicate with other computers
or networks of computers by way of a network adapter
capable of communicating 5028 with a network 5029.
Example network adapters are communications channels,
token ring, Ethernet or modems. Alternatively, the system
5021 may communicate using a wireless interface, such as a
CDPD (cellular digital packet data) card. The system 5021
may be associated with such other computers in a Local Area
Network (LAN) or a Wide Area Network (WAN), or the
system 5021 can be a client in a client/server arrangement
with another computer, etc. All of these configurations, as
well as the appropriate communications hardware and soft-
ware, are known in the art.

FIG. 15 illustrates a data processing network 5040 in which
one or more aspects may be practiced. The data processing
network 5040 may include a plurality of individual networks,
such as a wireless network and a wired network, each of
which may include a plurality of individual workstations
5041, 5042, 5043, 5044. Additionally, as those skilled in the
art will appreciate, one or more LANs may be included,
where a LAN may comprise a plurality of intelligent work-
stations coupled to a host processor.

Still referring to FIG. 15, the networks may also include
mainframe computers or servers, such as a gateway computer
(client server 5046) or application server (remote server 5048
which may access a data repository and may also be accessed
directly from a workstation 5045). A gateway computer 5046
serves as a point of entry into each individual network. A
gateway is needed when connecting one networking protocol
to another. The gateway 5046 may be preferably coupled to
another network (the Internet 5047 for example) by means of
a communications link. The gateway 5046 may also be
directly coupled to one or more workstations 5041, 5042,
5043, 5044 using a communications link. The gateway com-
puter may be implemented utilizing an IBM eServer™ Sys-
tem z® server available from International Business
Machines Corporation.

Referring concurrently to FIG. 14 and FIG. 15, software
programming code which may embody one or more aspects
may be accessed by the processor 5026 of the system 5020
from long-term storage media 5027, such as a CD-ROM drive
or hard drive. The software programming code may be
embodied on any of a variety of known media for use with a
data processing system, such as a diskette, hard drive, or
CD-ROM. The code may be distributed on such media, or
may be distributed to users 5050, 5051 from the memory or
storage of one computer system over a network to other
computer systems for use by users of such other systems.

Alternatively, the programming code may be embodied in
the memory 5025, and accessed by the processor 5026 using
the processor bus. Such programming code includes an oper-
ating system which controls the function and interaction of
the various computer components and one or more applica-
tion programs 5032. Program code is normally paged from
storage media 5027 to high-speed memory 5025 where it is
available for processing by the processor 5026. The tech-
niques and methods for embodying software programming

20

40

45

22

code in memory, on physical media, and/or distributing soft-
ware code via networks are well known and will not be further
discussed herein. Program code, when created and stored on
a tangible medium (including but not limited to electronic
memory modules (RAM), flash memory, Compact Discs
(CDs), DVDs, Magnetic Tape and the like is often referred to
as a “computer program product”. The computer program
product medium is typically readable by a processing circuit
preferably in a computer system for execution by the process-
ing circuit.

The cache that is most readily available to the processor
(normally faster and smaller than other caches of the proces-
sor) is the lowest (L1 or level one) cache and main store (main
memory) is the highest level cache (L3 if there are 3 levels).
The lowest level cache is often divided into an instruction
cache (I-Cache) holding machine instructions to be executed
and a data cache (D-Cache) holding data operands.

Referring to FIG. 16, an exemplary processor embodiment
is depicted for processor 5026. Typically one or more levels of
cache 5053 are employed to buffer memory blocks in order to
improve processor performance. The cache 5053 is a high
speed buffer holding cache lines of memory data that are
likely to be used. Typical cache lines are 64, 128 or 256 bytes
of memory data. Separate caches are often employed for
caching instructions than for caching data. Cache coherence
(synchronization of copies of lines in memory and the caches)
is often provided by various “snoop” algorithms well known
in the art. Main memory storage 5025 of a processor system
is often referred to as a cache. In a processor system having 4
levels of cache 5053, main storage 5025 is sometimes referred
to as the level 5 (L5) cache since it is typically faster and only
holds a portion of the non-volatile storage (DASD, tape etc)
that is available to a computer system. Main storage 5025
“caches” pages of data paged in and out of the main storage
5025 by the operating system.

A program counter (instruction counter) 5061 keeps track
of the address of the current instruction to be executed. A
program counter in a z/Architecture® processor is 64 bits and
can be truncated to 31 or 24 bits to support prior addressing
limits. A program counter is typically embodied in a PSW
(program status word) of a computer such that it persists
during context switching. Thus, a program in progress, hav-
ing a program counter value, may be interrupted by, for
example, the operating system (context switch from the pro-
gram environment to the operating system environment). The
PSW of the program maintains the program counter value
while the program is not active, and the program counter (in
the PSW) of the operating system is used while the operating
system is executing. Typically, the program counter is incre-
mented by an amount equal to the number of bytes of the
current instruction. RISC (Reduced Instruction Set Comput-
ing) instructions are typically fixed length while CISC (Com-
plex Instruction Set Computing) instructions are typically
variable length. Instructions of the IBM z/Architecture® are
CISC instructions having a length of 2, 4 or 6 bytes. The
Program counter 5061 is modified by either a context switch
operation or a branch taken operation of a branch instruction
for example. In a context switch operation, the current pro-
gram counter value is saved in the program status word along
with other state information about the program being
executed (such as condition codes), and a new program
counter value is loaded pointing to an instruction of a new
program module to be executed. A branch taken operation is
performed in order to permit the program to make decisions
or loop within the program by loading the result of the branch
instruction into the program counter 5061.

US 9,348,596 B2

23

Typically an instruction fetch unit 5055 is employed to
fetch instructions on behalf of the processor 5026. The fetch
unit either fetches “next sequential instructions”, target
instructions of branch taken instructions, or first instructions
of'a program following a context switch. Modern Instruction
fetch units often employ prefetch techniques to speculatively
prefetch instructions based on the likelihood that the
prefetched instructions might be used. For example, a fetch
unit may fetch 16 bytes of instruction that includes the next
sequential instruction and additional bytes of further sequen-
tial instructions.

The fetched instructions are then executed by the processor
5026. In an embodiment, the fetched instruction(s) are passed
to a dispatch unit 5056 of the fetch unit. The dispatch unit
decodes the instruction(s) and forwards information about the
decoded instruction(s) to appropriate units 5057, 5058, 5060.
An execution unit 5057 will typically receive information
about decoded arithmetic instructions from the instruction
fetch unit 5055 and will perform arithmetic operations on
operands according to the opcode of the instruction. Oper-
ands are provided to the execution unit 5057 preferably either
from memory 5025, architected registers 5059 or from an
immediate field of the instruction being executed. Results of
the execution, when stored, are stored either in memory 5025,
registers 5059 or in other machine hardware (such as control
registers, PSW registers and the like).

A processor 5026 typically has one or more units 5057,
5058, 5060 for executing the function of the instruction.
Referring to FIG. 17A, an execution unit 5057 may commu-
nicate with architected general registers 5059, a decode/dis-
patch unit 5056, a load store unit 5060, and other 5065 pro-
cessor units by way of interfacing logic 5071. An execution
unit 5057 may employ several register circuits 5067, 5068,
5069 to hold information that the arithmetic logic unit (ALU)
5066 will operate on. The ALU performs arithmetic opera-
tions such as add, subtract, multiply and divide as well as
logical function such as and, or and exclusive-or (XOR),
rotate and shift. Preferably the ALU supports specialized
operations that are design dependent. Other circuits may pro-
vide other architected facilities 5072 including condition
codes and recovery support logic for example. Typically the
result of an ALU operation is held in an output register circuit
5070 which can forward the result to a variety of other pro-
cessing functions. There are many arrangements of processor
units, the present description is only intended to provide a
representative understanding of one embodiment.

An ADD instruction for example would be executed in an
execution unit 5057 having arithmetic and logical function-
ality while a floating point instruction for example would be
executed in a floating point execution having specialized
floating point capability. Preferably, an execution unit oper-
ates on operands identified by an instruction by performing an
opcode defined function on the operands. For example, an
ADD instruction may be executed by an execution unit 5057
on operands found in two registers 5059 identified by register
fields of the instruction.

The execution unit 5057 performs the arithmetic addition
on two operands and stores the result in a third operand where
the third operand may be a third register or one of the two
source registers. The execution unit preferably utilizes an
Arithmetic Logic Unit (ALU) 5066 that is capable of per-
forming a variety of logical functions such as Shift, Rotate,
And, Or and XOR as well as a variety of algebraic functions
including any of add, subtract, multiply, divide. Some AL Us
5066 are designed for scalar operations and some for floating
point. Data may be Big Endian (where the least significant
byte is at the highest byte address) or Little Endian (where the

10

15

20

25

30

35

40

45

50

55

60

65

24

least significant byte is at the lowest byte address) depending
on architecture. The IBM z/Architecture® is Big Endian.
Signed fields may be sign and magnitude, 1’s complement or
2’s complement depending on architecture. A 2’s comple-
ment number is advantageous in that the ALU does not need
to design a subtract capability since either a negative value or
a positive value in 2’s complement requires only an addition
within the AL U. Numbers are commonly described in short-
hand, where a 12 bit field defines an address of a 4,096 byte
block and is commonly described as a 4 Kbyte (Kilo-byte)
block, for example.

Referring to FIG. 17B, branch instruction information for
executing a branch instruction is typically sent to a branch
unit 5058 which often employs a branch prediction algorithm
such as a branch history table 5082 to predict the outcome of
the branch before other conditional operations are complete.
The target of the current branch instruction will be fetched
and speculatively executed before the conditional operations
are complete. When the conditional operations are completed
the speculatively executed branch instructions are either com-
pleted or discarded based on the conditions of the conditional
operation and the speculated outcome. A typical branch
instruction may test condition codes and branch to a target
address if the condition codes meet the branch requirement of
the branch instruction, a target address may be calculated
based on several numbers including ones found in register
fields or an immediate field of the instruction for example.
The branch unit 5058 may employ an ALU 5074 having a
plurality of input register circuits 5075, 5076, 5077 and an
output register circuit 5080. The branch unit 5058 may com-
municate with general registers 5059, decode dispatch unit
5056 or other circuits 5073, for example.

The execution of a group of instructions can be interrupted
for avariety of reasons including a context switch initiated by
an operating system, a program exception or error causing a
context switch, an I/O interruption signal causing a context
switch or multi-threading activity of a plurality of programs
(in a multi-threaded environment), for example. Preferably a
context switch action saves state information about a cur-
rently executing program and then loads state information
about another program being invoked. State information may
be saved in hardware registers or in memory for example.
State information preferably comprises a program counter
value pointing to a next instruction to be executed, condition
codes, memory translation information and architected reg-
ister content. A context switch activity can be exercised by
hardware circuits, application programs, operating system
programs or firmware code (microcode, pico-code or licensed
internal code (L.IC)) alone or in combination.

A processor accesses operands according to instruction
defined methods. The instruction may provide an immediate
operand using the value of a portion of the instruction, may
provide one or more register fields explicitly pointing to
either general purpose registers or special purpose registers
(floating point registers for example). The instruction may
utilize implied registers identified by an opcode field as oper-
ands. The instruction may utilize memory locations for oper-
ands. A memory location of an operand may be provided by
a register, an immediate field, or a combination of registers
and immediate field as exemplified by the z/Architecture®
long displacement facility wherein the instruction defines a
base register, an index register and an immediate field (dis-
placement field) that are added together to provide the address
of'the operand in memory for example. Location herein typi-
cally implies a location in main memory (main storage)
unless otherwise indicated.

US 9,348,596 B2

25

Referring to FIG. 17C, a processor accesses storage using
a load/store unit 5060. The load/store unit 5060 may perform
aload operation by obtaining the address of the target operand
in memory 5053 and loading the operand in a register 5059 or
another memory 5053 location, or may perform a store opera-
tion by obtaining the address of the target operand in memory
5053 and storing data obtained from a register 5059 or
another memory 5053 location in the target operand location
inmemory 5053. The load/store unit 5060 may be speculative
and may access memory in a sequence that is out-of-order
relative to instruction sequence, however the load/store unit
5060 is to maintain the appearance to programs that instruc-
tions were executed in order. A load/store unit 5060 may
communicate with general registers 5059, decode/dispatch
unit 5056, cache/memory interface 5053 or other elements
5083 and comprises various register circuits, ALLUs 5085 and
control logic 5090 to calculate storage addresses and to pro-
vide pipeline sequencing to keep operations in-order. Some
operations may be out of order but the load/store unit provides
functionality to make the out of order operations to appear to
the program as having been performed in order, as is well
known in the art.

Preferably addresses that an application program “sees”
are often referred to as virtual addresses. Virtual addresses are
sometimes referred to as “logical addresses” and “effective
addresses”. These virtual addresses are virtual in that they are
redirected to physical memory location by one of a variety of
dynamic address translation (DAT) technologies including,
but not limited to, simply prefixing a virtual address with an
offset value, translating the virtual address via one or more
translation tables, the translation tables preferably compris-
ing at least a segment table and a page table alone or in
combination, preferably, the segment table having an entry
pointing to the page table. In the 7/ Architecture®, a hierarchy
of translation is provided including a region first table, a
region second table, a region third table, a segment table and
an optional page table. The performance of the address trans-
lation is often improved by utilizing a translation lookaside
buffer (TLB) which comprises entries mapping a virtual
address to an associated physical memory location. The
entries are created when the DAT translates a virtual address
using the translation tables. Subsequent use of the virtual
address can then utilize the entry of the fast TLB rather than
the slow sequential translation table accesses. TLB content
may be managed by a variety of replacement algorithms
including LRU (Least Recently used).

In the case where the processor is a processor of a multi-
processor system, each processor has responsibility to keep
shared resources, such as /O, caches, TLBs and memory,
interlocked for coherency. Typically, “snoop” technologies
will be utilized in maintaining cache coherency. In a snoop
environment, each cache line may be marked as being in any
one of a shared state, an exclusive state, a changed state, an
invalid state and the like in order to facilitate sharing.

1/O units 5054 (FIG. 16) provide the processor with means
for attaching to peripheral devices including tape, disc, print-
ers, displays, and networks for example. /O units are often
presented to the computer program by software drivers. In
mainframes, such as the System z® from IBM®, channel
adapters and open system adapters are 1/O units of the main-
frame that provide the communications between the operat-
ing system and peripheral devices.

Further, other types of computing environments can benefit
from one or more aspects. As an example, an environment
may include an emulator (e.g., software or other emulation
mechanisms), in which a particular architecture (including,
for instance, instruction execution, architected functions,

10

15

20

25

30

35

40

45

50

55

60

65

26

such as address translation, and architected registers) or a
subset thereof'is emulated (e.g., on a native computer system
having a processor and memory). In such an environment,
one or more emulation functions of the emulator can imple-
ment one or more aspects, even though a computer executing
the emulator may have a different architecture than the capa-
bilities being emulated. As one example, in emulation mode,
the specific instruction or operation being emulated is
decoded, and an appropriate emulation function is built to
implement the individual instruction or operation.

In an emulation environment, a host computer includes, for
instance, a memory to store instructions and data; an instruc-
tion fetch unit to fetch instructions from memory and to
optionally, provide local buffering for the fetched instruction;
an instruction decode unit to receive the fetched instructions
and to determine the type of instructions that have been
fetched; and an instruction execution unit to execute the
instructions. Execution may include loading data into a reg-
ister from memory; storing data back to memory from a
register; or performing some type of arithmetic or logical
operation, as determined by the decode unit. In one example,
each unit is implemented in software. For instance, the opera-
tions being performed by the units are implemented as one or
more subroutines within emulator software.

More particularly, in a mainframe, architected machine
instructions are used by programmers, usually today “C”
programmers, often by way of a compiler application. These
instructions stored in the storage medium may be executed
natively in a 7/ Architecture® IBM® Server, or alternatively
in machines executing other architectures. They can be emu-
lated in the existing and in future IBM mainframe servers and
on other machines of IBM® (e.g., Power Systems servers and
System x® Servers). They can be executed in machines run-
ning Linux on a wide variety of machines using hardware
manufactured by IBM®, Intel® AMD™, and others.
Besides execution on that hardware under a z/Architecture®,
Linux can be used as well as machines which use emulation
by Hercules, UMX, or FSI (Fundamental Software, Inc),
where generally execution is in an emulation mode. In emu-
lation mode, emulation software is executed by a native pro-
cessor to emulate the architecture of an emulated processor.

The native processor typically executes emulation soft-
ware comprising either firmware or a native operating system
to perform emulation of the emulated processor. The emula-
tion software is responsible for fetching and executing
instructions of the emulated processor architecture. The emu-
lation software maintains an emulated program counter to
keep track of instruction boundaries. The emulation software
may fetch one or more emulated machine instructions at a
time and convert the one or more emulated machine instruc-
tions to a corresponding group of native machine instructions
for execution by the native processor. These converted
instructions may be cached such that a faster conversion can
be accomplished. Notwithstanding, the emulation software is
to maintain the architecture rules of the emulated processor
architecture so as to assure operating systems and applica-
tions written for the emulated processor operate correctly.
Furthermore, the emulation software is to provide resources
identified by the emulated processor architecture including,
but not limited to, control registers, general purpose registers,
floating point registers, dynamic address translation function
including segment tables and page tables for example, inter-
rupt mechanisms, context switch mechanisms, Time of Day
(TOD) clocks and architected interfaces to 1/O subsystems
such that an operating system or an application program
designed to run on the emulated processor, can be run on the
native processor having the emulation software.

US 9,348,596 B2

27

A specific instruction being emulated is decoded, and a
subroutine is called to perform the function of the individual
instruction. An emulation software function emulating a
function of an emulated processor is implemented, for
example, in a “C” subroutine or driver, or some other method
of providing a driver for the specific hardware as will be
within the skill of those in the art after understanding the
description of the preferred embodiment. Various software
and hardware emulation patents including, but not limited to
U.S. Pat. No. 5,551,013, entitled “Multiprocessor for Hard-
ware Emulation”, by Beausoleil et al.; and U.S. Pat. No.
6,009,261, entitled “Preprocessing of Stored Target Routines
for Emulating Incompatible Instructions on a Target Proces-
sor”, by Scalzi et al; and U.S. Pat. No. 5,574,873, entitled
“Decoding Guest Instruction to Directly Access Emulation
Routines that Emulate the Guest Instructions”, by Davidian et
al; and U.S. Pat. No. 6,308,255, entitled “Symmetrical Mul-
tiprocessing Bus and Chipset Used for Coprocessor Support
Allowing Non-Native Code to Run in a System”, by Gorishek
et al; and U.S. Pat. No. 6,463,582, entitled “Dynamic Opti-
mizing Object Code Translator for Architecture Emulation
and Dynamic Optimizing Object Code Translation Method”,
by Lethin et al; and U.S. Pat. No. 5,790,825, entitled “Method
for Emulating Guest Instructions on a Host Computer
Through Dynamic Recompilation of Host Instructions”, by
Eric Traut, each of which is hereby incorporated herein by
reference in its entirety; and many others, illustrate a variety
of' known ways to achieve emulation of an instruction format
architected for a different machine for a target machine avail-
able to those skilled in the art.

In FIG. 18, an example of an emulated host computer
system 5092 is provided that emulates a host computer sys-
tem 5000' of a host architecture. In the emulated host com-
puter system 5092, the host processor (CPU) 5091 is an
emulated host processor (or virtual host processor) and com-
prises an emulation processor 5093 having a different native
instruction set architecture than that of the processor 5091 of
the host computer 5000'. The emulated host computer system
5092 has memory 5094 accessible to the emulation processor
5093. In the example embodiment, the memory 5094 is par-
titioned into a host computer memory 5096 portion and an
emulation routines 5097 portion. The host computer memory
5096 is available to programs of the emulated host computer
5092 according to host computer architecture. The emulation
processor 5093 executes native instructions of an architected
instruction set of an architecture other than that of the emu-
lated processor 5091, the native instructions obtained from
emulation routines memory 5097, and may access a host
instruction for execution from a program in host computer
memory 5096 by employing one or more instruction(s)
obtained in a sequence & access/decode routine which may
decode the host instruction(s) accessed to determine a native
instruction execution routine for emulating the function of the
host instruction accessed. Other facilities that are defined for
the host computer system 5000 architecture may be emulated
by architected facilities routines, including such facilities as
general purpose registers, control registers, dynamic address
translation and /O subsystem support and processor cache,
for example. The emulation routines may also take advantage
of functions available in the emulation processor 5093 (such
as general registers and dynamic translation of virtual
addresses) to improve performance ofthe emulation routines.
Special hardware and off-load engines may also be provided
to assist the processor 5093 in emulating the function of the
host computer 5000'.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be

10

15

20

25

30

35

40

45

50

55

60

65

28

limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising”, when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below, if any, are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
one or more aspects has been presented for purposes of illus-
tration and description, but is not intended to be exhaustive or
limited to the invention in the form disclosed. Many modifi-
cations and variations will be apparent to those of ordinary
skill in the art without departing from the scope and spirit of
the invention. The embodiment was chosen and described in
order to best explain the principles of the invention and the
practical application, and to enable others of ordinary skill in
the art to understand the invention for various embodiments
with various modifications as are suited to the particular use
contemplated.

What is claimed is:

1. A computer program product for facilitating processing
in a processing environment, said computer program product
comprising:

a non-transitory computer readable storage medium read-
able by a processing circuit and storing instructions for
execution by the processing circuit for performing a
method comprising:
obtaining an instruction to be executed in the processing

environment;

determining whether the instruction is to be included in

a current group of instructions or a new group of

instructions, wherein the determining is based on

whether the instruction is a candidate for optimization

with another instruction according to an optimization

criterion, and wherein the determining further com-

prises:

checking whether an instruction sequence to be opti-
mized that includes at least the instruction and the
other instruction fits in the current group of instruc-
tions, wherein the checking includes checking a
marker associated with the instruction, the marker
indicating a length of the instruction sequence; and

forming the new group of instructions based on deter-
mining the instruction is a candidate for optimiza-
tion and the instruction sequence does not fit in the
current group of instructions, wherein the new
group of instructions includes the instruction and
the other instruction; and

based on forming the new group of instructions, execut-

ing at least one instruction associated with the new

group of instructions.

2. The computer program product of claim 1, wherein the
determining comprises determining whether the instruction
represents a beginning of a potential optimization sequence
that includes the instruction and the other instruction, and
wherein the forming forms the new group of instructions
based on the instruction representing the beginning of a
potential optimization sequence.

3. The computer program product of claim 2, wherein the
determining whether the instruction represents the beginning
of a potential optimization sequence comprises checking a

US 9,348,596 B2

29

selected marker associated with the instruction, the selected
marker indicating whether the instruction starts a potential
optimization sequence.

4. The computer program product of claim 3, wherein the
method further comprises marking the instruction with the
selected marker, the selected marker indicating one of: the
instruction is considered as representing the beginning of a
potential optimization sequence, or the instruction is not con-
sidered as representing the beginning of a potential optimi-
zation sequence, and wherein the marking is performed at
instruction fetch.

5. The computer program product of claim 1, wherein the
method further comprises:

determining a number of instructions in the instruction

sequence; and

marking the instruction with a marker that indicates the

number of instructions, the marking being performed at
instruction fetch.

6. The computer program product of claim 1, wherein the
optimization criterion is specified in one or more templates,
and wherein at least one template of the one or more templates
is to be used to determine whether the instruction is a candi-
date for optimization.

7. The computer program product of claim 1, wherein the
optimization criterion optimizes the instruction and the other
instruction by creating at least one internal operation that
represents at least a portion of the instruction and at least a
portion of the other instruction.

8. The computer program product of claim 1, wherein the
optimization is performed at decode time.

9. A computer system for facilitating processing in a pro-
cessing environment, said computer system comprising:

a memory; and

a processor in communications with the memory, wherein

the computer system is configured to perform a method,
said method comprising:
obtaining an instruction to be executed in the processing
environment;
determining whether the instruction is to be included in
a current group of instructions or a new group of
instructions, wherein the determining is based on
whether the instruction is a candidate for optimization
with another instruction according to an optimization
criterion, and wherein the determining further com-
prises:
checking whether an instruction sequence to be opti-
mized that includes at least the instruction and the
other instruction fits in the current group of instruc-
tions, wherein the checking includes checking a
marker associated with the instruction, the marker
indicating a length of the instruction sequence; and

15

20

25

30

35

40

45

50

30

forming the new group of instructions based on deter-
mining the instruction is a candidate for optimiza-
tion and the instruction sequence does not fit in the
current group of instructions, wherein the new
group of instructions includes the instruction and
the other instruction; and
based on forming the new group of instructions, execut-
ing at least one instruction associated with the new
group of instructions.

10. The computer system of claim 9, wherein the determin-
ing comprises determining whether the instruction represents
abeginning of a potential optimization sequence that includes
the instruction and the other instruction, and wherein the
forming forms the new group of instructions based on the
instruction representing the beginning of a potential optimi-
zation sequence.

11. The computer system of claim 10, wherein the deter-
mining whether the instruction represents the beginning of a
potential optimization sequence comprises checking a
selected marker associated with the instruction, the selected
marker indicating whether the instruction starts a potential
optimization sequence.

12. The computer system of claim 9, wherein the optimi-
zation criterion optimizes the instruction and the other
instruction by creating at least one internal operation that
represents at least a portion of the instruction and at least a
portion of the other instruction.

13. The computer system of claim 9, wherein the optimi-
zation is performed at decode time.

14. The computer system of claim 11, wherein the method
further comprises marking the instruction with the selected
marker, the selected marker indicating one of: the instruction
is considered as representing the beginning of a potential
optimization sequence, or the instruction is not considered as
representing the beginning of a potential optimization
sequence, and wherein the marking is performed at instruc-
tion fetch.

15. The computer system of claim 9, wherein the method
further comprises:

determining a number of instructions in the instruction

sequence; and

marking the instruction with a marker that indicates the

number of instructions, the marking being performed at
instruction fetch.

16. The computer system of claim 9, wherein the optimi-
zation criterion is specified in one or more templates, and
wherein at least one template of the one or more templates is
to be used to determine whether the instruction is a candidate
for optimization.

